Revealing Sea Turtle Behavior in Relation to Fishing Gear Using Color-Coded Spatiotemporal Motion Patterns With Deep Neural Networks

Janie L. Reavis, H. Seckin Demir, Blair E. Witherington, Michael J. Bresette, Jennifer Blain Christen, Jesse F. Senko, Sule Ozev

Research output: Contribution to journalArticlepeer-review


Incidental capture, or bycatch, of marine species is a global conservation concern. Interactions with fishing gear can cause mortality in air-breathing marine megafauna, including sea turtles. Despite this, interactions between sea turtles and fishing gear—from a behavior standpoint—are not sufficiently documented or described in the literature. Understanding sea turtle behavior in relation to fishing gear is key to discovering how they become entangled or entrapped in gear. This information can also be used to reduce fisheries interactions. However, recording and analyzing these behaviors is difficult and time intensive. In this study, we present a machine learning-based sea turtle behavior recognition scheme. The proposed method utilizes visual object tracking and orientation estimation tasks to extract important features that are used for recognizing behaviors of interest with green turtles (Chelonia mydas) as the study subject. Then, these features are combined in a color-coded feature image that represents the turtle behaviors occurring in a limited time frame. These spatiotemporal feature images are used along a deep convolutional neural network model to recognize the desired behaviors, specifically evasive behaviors which we have labeled “reversal” and “U-turn.” Experimental results show that the proposed method achieves an average F1 score of 85% in recognizing the target behavior patterns. This method is intended to be a tool for discovering why sea turtles become entangled in gillnet fishing gear.

Original languageEnglish (US)
Article number785357
JournalFrontiers in Marine Science
StatePublished - Nov 25 2021


  • Chelonia mydas
  • behavior recognition
  • color-coding
  • green turtle
  • machine learning
  • motion
  • neural network
  • spatiotemporal features

ASJC Scopus subject areas

  • Oceanography
  • Global and Planetary Change
  • Aquatic Science
  • Water Science and Technology
  • Environmental Science (miscellaneous)
  • Ocean Engineering


Dive into the research topics of 'Revealing Sea Turtle Behavior in Relation to Fishing Gear Using Color-Coded Spatiotemporal Motion Patterns With Deep Neural Networks'. Together they form a unique fingerprint.

Cite this