Protein Crystallization in an Actuated Microfluidic Nanowell Device

Bahige G. Abdallah, Shatabdi Roy-Chowdhury, Raimund Fromme, Petra Fromme, Alexandra Ros

Research output: Contribution to journalArticlepeer-review

23 Scopus citations

Abstract

Protein crystallization is a major bottleneck of structure determination by X-ray crystallography, hampering the process by years in some cases. Numerous matrix screening trials using significant amounts of protein are often applied, while a systematic approach with phase diagram determination is prohibited for many proteins that can only be expressed in small amounts. Here, we demonstrate a microfluidic nanowell device implementing protein crystallization and phase diagram screening using nanoscale volumes of protein solution per trial. The device is made with cost-effective materials and is completely automated for efficient and economical experimentation. In the developed device, 170 trials can be realized with unique concentrations of protein and precipitant established by gradient generation and isolated by elastomeric valving for crystallization incubation. Moreover, this device can be further downscaled to smaller nanowell volumes and larger scale integration. The device was calibrated using a fluorescent dye and compared to a numerical model where concentrations of each trial can be quantified to establish crystallization phase diagrams. Using this device, we successfully crystallized lysozyme and C-phycocyanin, as visualized by compatible crystal imaging techniques such as bright-field microscopy, UV fluorescence, and second-order nonlinear imaging of chiral crystals. Concentrations yielding observed crystal formation were quantified and used to determine regions of the crystallization phase space for both proteins. Low sample consumption and compatibility with a variety of proteins and imaging techniques make this device a powerful tool for systematic crystallization studies.

Original languageEnglish (US)
Pages (from-to)2074-2082
Number of pages9
JournalCrystal Growth and Design
Volume16
Issue number4
DOIs
StatePublished - Apr 6 2016

ASJC Scopus subject areas

  • General Chemistry
  • General Materials Science
  • Condensed Matter Physics

Fingerprint

Dive into the research topics of 'Protein Crystallization in an Actuated Microfluidic Nanowell Device'. Together they form a unique fingerprint.

Cite this