TY - JOUR
T1 - Flexible Fitting of Small Molecules into Electron Microscopy Maps Using Molecular Dynamics Simulations with Neural Network Potentials
AU - Vant, John W.
AU - Lahey, Shae Lynn J.
AU - Jana, Kalyanashis
AU - Shekhar, Mrinal
AU - Sarkar, Daipayan
AU - Munk, Barbara H.
AU - Kleinekathöfer, Ulrich
AU - Mittal, Sumit
AU - Rowley, Christopher
AU - Singharoy, Abhishek
N1 - Funding Information:
A.S. acknowledges National Science Foundation for a CAREER grant (MCB-1942763), start-up funds from the School of Molecular Sciences and Center for Applied Structure Discovery at Arizona State University, and the resources of the OLCF at the Oak Ridge National Laboratory, which is supported by the Office of Science at DOE under Contract No. DE-AC05-00OR22725, made available via the INCITE program. J.W.V. and S.M. acknowledge Research Computing at Arizona State University for providing HPC resources that have contributed to the research results reported within this paper. C.R. and S.-L.J.L. thank NSERC of Canada for funding through the Discovery Grants program (RGPIN-05795-2016). S.-L.J.L. thanks the School of Graduate Studies at Memorial University for a graduate fellowship. C.R.’s computational resources were provided by Compute Canada (RAPI: djk-615-ab). C.R. and S.-L.J.L. acknowledge the support of NVIDIA Corporation through the donation of the Titan Xp GPU used for this research. K.J. acknowledges the Alexander von Humboldt (AvH) foundation for an AvH postdoctoral research fellowship. We also acknowledge NAMD and VMD developments supported by NIH (P41GM104601) and R01GM098243-02 for supporting our study of membrane proteins.
Publisher Copyright:
© 2020 American Chemical Society.
PY - 2020/5/26
Y1 - 2020/5/26
N2 - Despite significant advances in resolution, the potential for cryo-electron microscopy (EM) to be used in determining the structures of protein-drug complexes remains unrealized. Determination of accurate structures and coordination of bound ligands necessitates simultaneous fitting of the models into the density envelopes, exhaustive sampling of the ligand geometries, and, most importantly, concomitant rearrangements in the side chains to optimize the binding energy changes. In this article, we present a flexible-fitting pipeline where molecular dynamics flexible fitting (MDFF) is used to refine structures of protein-ligand complexes from 3 to 5 Å electron density data. Enhanced sampling is employed to explore the binding pocket rearrangements. To provide a model that can accurately describe the conformational dynamics of the chemically diverse set of small-molecule drugs inside MDFF, we use QM/MM and neural-network potential (NNP)/MM models of protein-ligand complexes, where the ligand is represented using the QM or NNP model, and the protein is represented using established molecular mechanical force fields (e.g., CHARMM). This pipeline offers structures commensurate to or better than recently submitted high-resolution cryo-EM or X-ray models, even when given medium to low-resolution data as input. The use of the NNPs makes the algorithm more robust to the choice of search models, offering a radius of convergence of 6.5 Å for ligand structure determination. The quality of the predicted structures was also judged by density functional theory calculations of ligand strain energy. This strain potential energy is found to systematically decrease with better fitting to density and improved ligand coordination, indicating correct binding interactions. A computationally inexpensive protocol for computing strain energy is reported as part of the model analysis protocol that monitors both the ligand fit as well as model quality.
AB - Despite significant advances in resolution, the potential for cryo-electron microscopy (EM) to be used in determining the structures of protein-drug complexes remains unrealized. Determination of accurate structures and coordination of bound ligands necessitates simultaneous fitting of the models into the density envelopes, exhaustive sampling of the ligand geometries, and, most importantly, concomitant rearrangements in the side chains to optimize the binding energy changes. In this article, we present a flexible-fitting pipeline where molecular dynamics flexible fitting (MDFF) is used to refine structures of protein-ligand complexes from 3 to 5 Å electron density data. Enhanced sampling is employed to explore the binding pocket rearrangements. To provide a model that can accurately describe the conformational dynamics of the chemically diverse set of small-molecule drugs inside MDFF, we use QM/MM and neural-network potential (NNP)/MM models of protein-ligand complexes, where the ligand is represented using the QM or NNP model, and the protein is represented using established molecular mechanical force fields (e.g., CHARMM). This pipeline offers structures commensurate to or better than recently submitted high-resolution cryo-EM or X-ray models, even when given medium to low-resolution data as input. The use of the NNPs makes the algorithm more robust to the choice of search models, offering a radius of convergence of 6.5 Å for ligand structure determination. The quality of the predicted structures was also judged by density functional theory calculations of ligand strain energy. This strain potential energy is found to systematically decrease with better fitting to density and improved ligand coordination, indicating correct binding interactions. A computationally inexpensive protocol for computing strain energy is reported as part of the model analysis protocol that monitors both the ligand fit as well as model quality.
UR - http://www.scopus.com/inward/record.url?scp=85085264358&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85085264358&partnerID=8YFLogxK
U2 - 10.1021/acs.jcim.9b01167
DO - 10.1021/acs.jcim.9b01167
M3 - Article
C2 - 32207947
AN - SCOPUS:85085264358
SN - 1549-9596
VL - 60
SP - 2591
EP - 2604
JO - Journal of Chemical Information and Modeling
JF - Journal of Chemical Information and Modeling
IS - 5
ER -