Urban water capacity: Irrigation for heat mitigation

Chenghao Wang, Zhi Hua Wang, Jiachuan Yang

Research output: Contribution to journalArticlepeer-review

38 Scopus citations

Abstract

Our world has been continuously urbanized and is currently accommodating more than half of the human population. Despite that cities cover only <3% of the Earth's land surface area, they emerged as focal points of human activities, and confront numerous environmental challenges as a result of changes in landscapes, hydroclimate, ecosystems, and biodiversity. In particular, the built environment usually experiences exacerbated heat stress induced by global climate and landscape changes, commonly known as the urban heat island effect. Urban irrigation, as a climate adaptation and mitigation strategy, is effective in cooling the built environment, but exhibits large uncertainties in the trade-off between water use and heat mitigation capacity. Here we show the efficiency of cooling effect induced by irrigation of urban vegetation, represented by a novel metric, viz. urban water capacity, analogous to the heat capacity, across the contiguous United States (CONUS) during summertime via numerical simulations. The urban water capacity is calculated as the average irrigation depth per degree of urban temperature reduction; the values are 4.52 ± 0.77 mm day−1 °C−1 and 7.27 ± 1.27 mm day−1 °C−1 (mean ± standard deviation) for surface and near-surface air cooling, respectively, over the CONUS. The robustness of urban water capacity is further exemplified in an extreme heat wave event, during which the warming anomaly is partially offset by the additional cooling from urban irrigation. Estimates of water capacity provide a quantitative metric for evaluating the efficacy of irrigation in urban planning under current heat stress and future warming.

Original languageEnglish (US)
Article number101397
JournalComputers, Environment and Urban Systems
Volume78
DOIs
StatePublished - Nov 2019

Keywords

  • Extreme heat wave
  • Heat mitigation
  • Irrigation
  • Regional hydroclimate
  • Urban water capacity
  • Water–heat trade-off

ASJC Scopus subject areas

  • Geography, Planning and Development
  • Ecological Modeling
  • General Environmental Science
  • Urban Studies

Fingerprint

Dive into the research topics of 'Urban water capacity: Irrigation for heat mitigation'. Together they form a unique fingerprint.

Cite this