Unsupervised Non-Rigid Image Distortion Removal via Grid Deformation

Nianyi Li, Simron Thapa, Cameron Whyte, Albert Reed, Suren Jayasuriya, Jinwei Ye

Research output: Chapter in Book/Report/Conference proceedingConference contribution

11 Scopus citations


Many computer vision problems face difficulties when imaging through turbulent refractive media (e.g., air and water) due to the refraction and scattering of light. These effects cause geometric distortion that requires either handcrafted physical priors or supervised learning methods to remove. In this paper, we present a novel unsupervised network to recover the latent distortion-free image. The key idea is to model non-rigid distortions as deformable grids. Our network consists of a grid deformer that estimates the distortion field and an image generator that outputs the distortion-free image. By leveraging the positional encoding operator, we can simplify the network structure while maintaining fine spatial details in the recovered images. Our method doesn't need to be trained on labeled data and has good transferability across various turbulent image datasets with different types of distortions. Extensive experiments on both simulated and real-captured turbulent images demonstrate that our method can remove both air and water distortions without much customization.

Original languageEnglish (US)
Title of host publicationProceedings - 2021 IEEE/CVF International Conference on Computer Vision, ICCV 2021
PublisherInstitute of Electrical and Electronics Engineers Inc.
Number of pages11
ISBN (Electronic)9781665428125
StatePublished - 2021
Event18th IEEE/CVF International Conference on Computer Vision, ICCV 2021 - Virtual, Online, Canada
Duration: Oct 11 2021Oct 17 2021

Publication series

NameProceedings of the IEEE International Conference on Computer Vision
ISSN (Print)1550-5499


Conference18th IEEE/CVF International Conference on Computer Vision, ICCV 2021
CityVirtual, Online

ASJC Scopus subject areas

  • Software
  • Computer Vision and Pattern Recognition


Dive into the research topics of 'Unsupervised Non-Rigid Image Distortion Removal via Grid Deformation'. Together they form a unique fingerprint.

Cite this