TY - GEN
T1 - Understanding and predicting delay in reciprocal relations
AU - Li, Jundong
AU - Tang, Jiliang
AU - Wang, Yilin
AU - Wan, Yali
AU - Chang, Yi
AU - Liu, Huan
N1 - Funding Information:
This material is based upon work supported by, or in part by, the National Science Foundation (NSF) grant 1614576, and the Office of Naval Research (ONR) grant N00014-16-1-2257.
Publisher Copyright:
© 2018 IW3C2 (International World Wide Web Conference Committee), published under Creative Commons CC BY 4.0 License.
PY - 2018/4/10
Y1 - 2018/4/10
N2 - Reciprocity in directed networks points to user»s willingness to return favors in building mutual interactions. High reciprocity has been widely observed in many directed social media networks such as following relations in Twitter and Tumblr. Therefore, reciprocal relations between users are often regarded as a basic mechanism to create stable social ties and play a crucial role in the formation and evolution of networks. Each reciprocity relation is formed by two parasocial links in a back-and-forth manner with a time delay. Hence, understanding the delay can help us gain better insights into the underlying mechanisms of network dynamics. Meanwhile, the accurate prediction of delay has practical implications in advancing a variety of real-world applications such as friend recommendation and marketing campaign. For example, by knowing when will users follow back, service providers can focus on the users with a potential long reciprocal delay for effective targeted marketing. This paper presents the initial investigation of the time delay in reciprocal relations. Our study is based on a large-scale directed network from Tumblr that consists of 62.8 million users and 3.1 billion user following relations with a timespan of multiple years (from 31 Oct 2007 to 24 Jul 2013). We reveal a number of interesting patterns about the delay that motivate the development of a principled learning model to predict the delay in reciprocal relations. Experimental results on the above mentioned dynamic networks corroborate the effectiveness of the proposed delay prediction model.
AB - Reciprocity in directed networks points to user»s willingness to return favors in building mutual interactions. High reciprocity has been widely observed in many directed social media networks such as following relations in Twitter and Tumblr. Therefore, reciprocal relations between users are often regarded as a basic mechanism to create stable social ties and play a crucial role in the formation and evolution of networks. Each reciprocity relation is formed by two parasocial links in a back-and-forth manner with a time delay. Hence, understanding the delay can help us gain better insights into the underlying mechanisms of network dynamics. Meanwhile, the accurate prediction of delay has practical implications in advancing a variety of real-world applications such as friend recommendation and marketing campaign. For example, by knowing when will users follow back, service providers can focus on the users with a potential long reciprocal delay for effective targeted marketing. This paper presents the initial investigation of the time delay in reciprocal relations. Our study is based on a large-scale directed network from Tumblr that consists of 62.8 million users and 3.1 billion user following relations with a timespan of multiple years (from 31 Oct 2007 to 24 Jul 2013). We reveal a number of interesting patterns about the delay that motivate the development of a principled learning model to predict the delay in reciprocal relations. Experimental results on the above mentioned dynamic networks corroborate the effectiveness of the proposed delay prediction model.
KW - Dynamic networks
KW - Reciprocal relations
KW - Time delay
UR - http://www.scopus.com/inward/record.url?scp=85085159866&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85085159866&partnerID=8YFLogxK
U2 - 10.1145/3178876.3186076
DO - 10.1145/3178876.3186076
M3 - Conference contribution
AN - SCOPUS:85085159866
T3 - The Web Conference 2018 - Proceedings of the World Wide Web Conference, WWW 2018
SP - 1643
EP - 1652
BT - The Web Conference 2018 - Proceedings of the World Wide Web Conference, WWW 2018
PB - Association for Computing Machinery, Inc
T2 - 27th International World Wide Web, WWW 2018
Y2 - 23 April 2018 through 27 April 2018
ER -