Tuning the Van Hove singularities in A V3Sb5 (A= K,Rb,Cs) via pressure and doping

Harrison Labollita, Antia S. Botana

Research output: Contribution to journalArticlepeer-review

33 Scopus citations


We investigate the electronic structure of the new family of kagome metals AV3Sb5 (A=K,Rb,Cs) using first-principles calculations. We analyze systematically the evolution of the van Hove singularities (vHs's) across the entire family upon applied pressure and hole doping, specifically focusing on the two vHs's closer to the Fermi energy. With pressure, these two saddle points shift away from the Fermi level. At the same time, the Fermi surface undergoes a large reconstruction with respect to the Sb bands while the V bands remain largely unchanged, pointing to the relevant role of the Sb atoms in the electronic structure of these materials. Upon hole doping, we find the opposite trend, where the saddle points move closer to the Fermi level for increasing dopings. All in all, we show how pressure and doping are indeed two mechanisms that can be used to tune the location of the two vHs's closer to the Fermi level, and that they can be exploited to tune different Fermi surface instabilities and associated orders.

Original languageEnglish (US)
Article number205129
JournalPhysical Review B
Issue number20
StatePublished - Nov 15 2021

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics


Dive into the research topics of 'Tuning the Van Hove singularities in A V3Sb5 (A= K,Rb,Cs) via pressure and doping'. Together they form a unique fingerprint.

Cite this