Tracking the Stability of Clinically Relevant Blood Plasma Proteins with Delta-S-Cys-Albumin—A Dilute-and-Shoot LC/MS-Based Marker of Specimen Exposure to Thawed Conditions

Erandi P. Kapuruge, Nilojan Jehanathan, Stephen P. Rogers, Stacy Williams, Yunro Chung, Chad R. Borges

Research output: Contribution to journalArticlepeer-review

3 Scopus citations

Abstract

Biomolecular integrity can be compromised when blood plasma/serum (P/S) specimens are improperly handled. Compromised analytes can subsequently produce erroneous results—without any indication of having done so. We recently introduced an LC/MS-based marker of P/S exposure to thawed conditions called ΔS-Cys-Albumin which, aided by an established rate law, quantitatively tracks exposure of P/S to temperatures greater than their freezing point of −30 C. The purposes of this study were to (1) evaluate ΔS-Cys-Albumin baseline values in gastrointestinal cancer patients and cancer-free control donors, (2) empirically assess the kinetic profiles of ΔS-Cys-Albumin at 23 C, 4 C, and −20 C, and (3) empirically link ΔS-Cys-Albumin to the stability of clinically relevant proteins. ΔS-Cys-Albumin was measured at ≥ 9 different time points per exposure temperature in serum and K2EDTA plasma samples from 24 separate donors in aliquots kept separately at 23 C, 4 C, and −20 C. Twenty-one clinically relevant plasma proteins were measured at four time points per temperature via a multiplexed immunoassay on the Luminex platform. Protein stability was assessed by mixed effects models. Coordinated shifts in stability between ΔS-Cys-Albumin and the unstable proteins were documented by repeated measures and Pearson correlations. Plasma ΔS-Cys-Albumin dropped from approximately 20% to under 5% within 96 h at 23 C, 28 days at 4 C, and 65 days at −20 C. On average, 22% of the 21 proteins significantly changed in apparent concentration at each exposure temperature (p < 0.0008 with >10% shift). A linear inverse relationship was found between the percentage of proteins destabilized and ΔS-Cys-Albumin (r = −0.61; p < 0.0001)—regardless of the specific time/temperature of exposure. ΔS-Cys-Albumin tracks cumulative thawed-state exposure. These results now enable ΔS-Cys-Albumin to approximate the percentage of clinically relevant proteins that have been compromised by incidental plasma exposure to thawed-state conditions.

Original languageEnglish (US)
Article number100420
JournalMolecular and Cellular Proteomics
Volume21
Issue number11
DOIs
StatePublished - Nov 2022

ASJC Scopus subject areas

  • Analytical Chemistry
  • Biochemistry
  • Molecular Biology

Fingerprint

Dive into the research topics of 'Tracking the Stability of Clinically Relevant Blood Plasma Proteins with Delta-S-Cys-Albumin—A Dilute-and-Shoot LC/MS-Based Marker of Specimen Exposure to Thawed Conditions'. Together they form a unique fingerprint.

Cite this