Towards Real-World 6G Drone Communication: Position and Camera Aided Beam Prediction

Gouranga Charan, Andrew Hredzak, Christian Stoddard, Benjamin Berrey, Madhav Seth, Hector Nunez, Ahmed Alkhateeb

Research output: Contribution to journalConference articlepeer-review

13 Scopus citations

Abstract

Millimeter-wave (mmWave) and terahertz (THz) communication systems typically deploy large antenna arrays to guarantee sufficient receive signal power. The beam training overhead associated with these arrays, however, make it hard for these systems to support highly-mobile applications such as drone communication. To overcome this challenge, this paper proposes a machine learning based approach that leverages additional sensory data, such as visual and positional data, for fast and accurate mmWave/THz beam prediction. The developed framework is evaluated on a real-world multi-modal mmWave drone communication dataset comprising co-existing camera, practical GPS, and mmWave beam training data. The proposed sensing-aided solution achieves a top-1 beam prediction accuracy of 86.32% and close to 100% top-3 and top-5 accuracies, while considerably reducing the beam training overhead. This highlights a promising solution for enabling highly-mobile 6G drone communications.

Original languageEnglish (US)
Pages (from-to)2951-2956
Number of pages6
JournalProceedings - IEEE Global Communications Conference, GLOBECOM
DOIs
StatePublished - 2022
Event2022 IEEE Global Communications Conference, GLOBECOM 2022 - Virtual, Online, Brazil
Duration: Dec 4 2022Dec 8 2022

Keywords

  • beam selection
  • camera
  • computer vision
  • deep learning
  • drone
  • Millimeter wave
  • position
  • sensing

ASJC Scopus subject areas

  • Artificial Intelligence
  • Computer Networks and Communications
  • Hardware and Architecture
  • Signal Processing

Fingerprint

Dive into the research topics of 'Towards Real-World 6G Drone Communication: Position and Camera Aided Beam Prediction'. Together they form a unique fingerprint.

Cite this