Topological scaling and gap filling at crisis

K. Gábor Szabó, Ying-Cheng Lai, Tamás Tél, Celso Grebogi

Research output: Contribution to journalArticlepeer-review

34 Scopus citations


Scaling laws associated with an interior crisis of chaotic dynamical systems are studied. We argue that open gaps of the chaotic set become densely filled at the crisis due to the sudden appearance of unstable periodic orbits with extremely long periods. We formulate a scaling theory for the associated growth of the topological entropy.

Original languageEnglish (US)
Pages (from-to)5019-5032
Number of pages14
JournalPhysical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics
Issue number5
StatePublished - 2000

ASJC Scopus subject areas

  • Statistical and Nonlinear Physics
  • Statistics and Probability
  • Condensed Matter Physics


Dive into the research topics of 'Topological scaling and gap filling at crisis'. Together they form a unique fingerprint.

Cite this