The multi-fidelity multi-armed bandit

Kirthevasan Kandasamy, Gautam Dasarathy, Jeff Schneider, Barnabás Póczos

Research output: Contribution to journalConference articlepeer-review

21 Scopus citations

Abstract

We study a variant of the classical stochastic K-armed bandit where observing the outcome of each arm is expensive, but cheap approximations to this outcome are available. For example, in online advertising the performance of an ad can be approximated by displaying it for shorter time periods or to narrower audiences. We formalise this task as a multi-fidelity bandit, where, at each time step, the forecaster may choose to play an arm at any one of M fidelities. The highest fidelity (desired outcome) expends cost λ(M). The mth fidelity (an approximation) expends λ(m) < λ(M) and returns a biased estimate of the highest fidelity. We develop MF-UCB, a novel upper confidence bound procedure for this setting and prove that it naturally adapts to the sequence of available approximations and costs thus attaining better regret than naive strategies which ignore the approximations. For instance, in the above online advertising example, MF-UCB would use the lower fidelities to quickly eliminate suboptimal ads and reserve the larger expensive experiments on a small set of promising candidates. We complement this result with a lower bound and show that MF-UCB is nearly optimal under certain conditions.

Original languageEnglish (US)
Pages (from-to)1785-1793
Number of pages9
JournalAdvances in Neural Information Processing Systems
StatePublished - Jan 1 2016
Externally publishedYes
Event30th Annual Conference on Neural Information Processing Systems, NIPS 2016 - Barcelona, Spain
Duration: Dec 5 2016Dec 10 2016

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Information Systems
  • Signal Processing

Fingerprint

Dive into the research topics of 'The multi-fidelity multi-armed bandit'. Together they form a unique fingerprint.

Cite this