The Launching of Cold Clouds by Galaxy Outflows. III. The Influence of Magnetic Fields

J'Neil Cottle, Evan Scannapieco, Marcus Brüggen, Wladimir Banda-Barragán, Christoph Federrath

Research output: Contribution to journalArticlepeer-review

25 Scopus citations


Motivated by observations of outflowing galaxies, we investigate the combined impact of magnetic fields and radiative cooling on the evolution of cold clouds embedded in a hot wind. We perform a collection of three-dimensional adaptive mesh refinement, magnetohydrodynamical simulations that span two resolutions, and include fields that are aligned and transverse to the oncoming, super-Alfvénic material. Aligned fields have little impact on the overall lifetime of the clouds over the non-magnetized case, although they do increase the mixing between the wind and cloud material by a factor of ≈3. Transverse fields lead to magnetic draping, which isolates the clouds, but they also squeeze material in the direction perpendicular to the field lines, which leads to rapid mass loss. A resolution study suggests that the magnetized simulations have somewhat better convergence properties than non-magnetized simulations, and that a resolution of 64 zones per cloud radius is sufficient to accurately describe these interactions. We conclude that the combined effects of radiative cooling and magnetic fields are dependent on field orientation, but are unlikely to enhance cloud lifetimes beyond the effect of radiative cooling alone.

Original languageEnglish (US)
Article number59
JournalAstrophysical Journal
Issue number1
StatePublished - Mar 20 2020

ASJC Scopus subject areas

  • Astronomy and Astrophysics
  • Space and Planetary Science


Dive into the research topics of 'The Launching of Cold Clouds by Galaxy Outflows. III. The Influence of Magnetic Fields'. Together they form a unique fingerprint.

Cite this