The heat released during catalytic turnover enhances the diffusion of an enzyme

Clement Riedel, Ronen Gabizon, Christian A.M. Wilson, Kambiz Hamadani, Konstantinos Tsekouras, Susan Marqusee, Steve Pressé, Carlos Bustamante

Research output: Contribution to journalArticlepeer-review

182 Scopus citations


Recent studies have shown that the diffusivity of enzymes increases in a substrate-dependent manner during catalysis1,2. Although this observation has been reported and characterized for several different systems3-10, the precise origin of this phenomenon is unknown. Calorimetric methods are often used to determine enthalpies from enzyme-catalysed reactions and can therefore provide important insight into their reaction mechanisms11,12. The ensemble averages involved in traditional bulk calorimetry cannot probe the transient effects that the energy exchanged in a reaction may have on the catalyst. Here we obtain single-molecule fluorescence correlation spectroscopy data and analyse them within the framework of a stochastic theory to demonstrate a mechanistic link between the enhanced diffusion of a single enzyme molecule and the heat released in the reaction. We propose that the heat released during catalysis generates an asymmetric pressure wave that results in a differential stress at the protein-solvent interface that transiently displaces the centre-of-mass of the enzyme (chemoacoustic effect). This novel perspective on how enzymes respond to the energy released during catalysis suggests a possible effect of the heat of reaction on the structural integrity and internal degrees of freedom of the enzyme.

Original languageEnglish (US)
Pages (from-to)227-230
Number of pages4
Issue number7533
StatePublished - Jan 8 2015
Externally publishedYes

ASJC Scopus subject areas

  • General


Dive into the research topics of 'The heat released during catalytic turnover enhances the diffusion of an enzyme'. Together they form a unique fingerprint.

Cite this