Structural and proteomic analyses reveal regional brain differences during honeybee aging

F. Wolschin, D. Münch, Gro Amdam

Research output: Contribution to journalArticlepeer-review

37 Scopus citations


Among insects, learning is particularly well studied in the fruit fly Drosophila melanogaster and the honeybee Apis mellifera. A senescence-dependent decline in classic pavlovian conditioning is demonstrated for both species. To understand how aging affects learning, genetic approaches used with Drosophila can benefit from complementary studies in Apis. Specifically, honeybees have a larger brain size allowing for compartment-specific approaches, and a unique life-history plasticity. They usually perform within-nest tasks early in life (nest bees) and later they collect food (foragers). Senescence of learning performance is a function of the bees' foraging duration but underlying causes are poorly understood. As cognitive aging is commonly associated with structural and biochemical changes in the brain, we hypothesized that brain areas implicated in learning change in synaptic and biochemical composition with increased foraging duration. First, we used synapse-specific immunohistochemistry and proteomics to screen for alterations in the calyx region of the mushroom body, a key structure for memory formation. Using proteomics, we next profiled the central brain, which comprises all higher-order integration centers. We show that, with increased foraging duration, levels of kinases, synaptic- and neuronal growth-related proteins decline in the central brain while the calyx region remains intact both in structure and biochemistry. We suggest that proteome-level changes within major anatomical sites of memory formation other than the calyx region could be central to learning dysfunction. These include large compartments of the central brain, such as the mushroom body's output regions and the antennal lobes. Our data provide novel information toward heterogeneity in the aging insect brain, and demonstrate advantages of the honeybee for invertebrate neurogerontological research.

Original languageEnglish (US)
Pages (from-to)4027-4032
Number of pages6
JournalJournal of Experimental Biology
Issue number24
StatePublished - Dec 15 2009


  • Aging
  • Immunohistochemistry
  • Learning
  • Neuronal degradation
  • Proteomics
  • Senescence

ASJC Scopus subject areas

  • Ecology, Evolution, Behavior and Systematics
  • Physiology
  • Aquatic Science
  • Animal Science and Zoology
  • Molecular Biology
  • Insect Science


Dive into the research topics of 'Structural and proteomic analyses reveal regional brain differences during honeybee aging'. Together they form a unique fingerprint.

Cite this