TY - GEN
T1 - Stability of amorphous/crystalline silicon heterojunctions
AU - Bowden, Stuart
AU - Das, Ujjwal
AU - Herasimenka, Stanislau
AU - Birkmire, Robert
PY - 2008/12/1
Y1 - 2008/12/1
N2 - Silicon heterojunction solar cells have demonstrated high efficiencies through excellent surface passivation. However, the use of amorphous silicon (a-Si) in the structure raises the question of long term stability as a-Si solar cells suffer degradation due to the Staebler-Wronski effect. The stability of a-Si in terms of its ability to passivate silicon wafers is evaluated by measuring the minority carrier lifetime and it is found to be unstable over time. The instability is most evident in thin, ∼ 10 nm, intrinsic a-Si only layers where lifetime falls from over 1ms immediately after annealing, to 300 μs one month later. The change in lifetime occurs even in the dark at room temperature with the largest fall in the first few days after deposition. The lifetime can be recovered close to its initial level by annealing the sample in air, indicating that the lifetime change is not due to a simple oxidation of the outer layer of a-Si. However, device measurements where an intrinsic/doped a-Si structure is used for the emitter and contact show no change in open circuit voltage or fill factor after one year. The changes in the passivation during processing has important implications for the sequence of device fabrication, the use of lifetime testing as a diagnostic tool and the passivation of all back contact devices.
AB - Silicon heterojunction solar cells have demonstrated high efficiencies through excellent surface passivation. However, the use of amorphous silicon (a-Si) in the structure raises the question of long term stability as a-Si solar cells suffer degradation due to the Staebler-Wronski effect. The stability of a-Si in terms of its ability to passivate silicon wafers is evaluated by measuring the minority carrier lifetime and it is found to be unstable over time. The instability is most evident in thin, ∼ 10 nm, intrinsic a-Si only layers where lifetime falls from over 1ms immediately after annealing, to 300 μs one month later. The change in lifetime occurs even in the dark at room temperature with the largest fall in the first few days after deposition. The lifetime can be recovered close to its initial level by annealing the sample in air, indicating that the lifetime change is not due to a simple oxidation of the outer layer of a-Si. However, device measurements where an intrinsic/doped a-Si structure is used for the emitter and contact show no change in open circuit voltage or fill factor after one year. The changes in the passivation during processing has important implications for the sequence of device fabrication, the use of lifetime testing as a diagnostic tool and the passivation of all back contact devices.
UR - http://www.scopus.com/inward/record.url?scp=84879698100&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84879698100&partnerID=8YFLogxK
U2 - 10.1109/PVSC.2008.4922850
DO - 10.1109/PVSC.2008.4922850
M3 - Conference contribution
AN - SCOPUS:84879698100
SN - 9781424416417
T3 - Conference Record of the IEEE Photovoltaic Specialists Conference
BT - 33rd IEEE Photovoltaic Specialists Conference, PVSC 2008
T2 - 33rd IEEE Photovoltaic Specialists Conference, PVSC 2008
Y2 - 11 May 2008 through 16 May 2008
ER -