Spatially localized multi-scale energy transfer in turbulent premixed combustion

J. Kim, M. Bassenne, C. A.Z. Towery, P. E. Hamlington, A. Y. Poludnenko, J. Urzay

Research output: Contribution to journalArticlepeer-review

28 Scopus citations


A three-dimensional wavelet multi-resolution analysis of direct numerical simulations of a turbulent premixed flame is performed in order to investigate the spatially localized spectral transfer of kinetic energy across scales in the vicinity of the flame front. A formulation is developed that addresses the compressible spectral dynamics of the kinetic energy in wavelet space. The wavelet basis enables the examination of local energy spectra, along with inter-scale and subfilter-scale (SFS) cumulative energy fluxes across a scale cutoff, all quantities being available either unconditioned or conditioned on the local instantaneous value of the progress variable across the flame brush. The results include the quantification of mean spectral values and associated spatial variabilities. The energy spectra undergo, in most locations in the flame brush, a precipitous drop that starts at scales of the same order as the characteristic flame scale and continues to smaller scales, even though the corresponding decrease of the mean spectra is much more gradual. The mean convective inter-scale flux indicates that convection increases the energy of small scales, although it does so in a non-conservative manner due to the high aspect ratio of the grid, which limits the maximum scale level that can be used in the wavelet transform, and to the non-periodic boundary conditions, which exchange energy through surface forces, as explicitly elucidated by the formulation. The mean pressure-gradient inter-scale flux extracts energy from intermediate scales of the same order as the characteristic flame scale, and injects energy in the smaller and larger scales. The local SFS-cumulative contribution of the convective and pressure-gradient mechanisms of energy transfer across a given cutoff scale imposed by a wavelet filter is analysed. The local SFS-cumulative energy flux is such that the subfilter scales upstream from the flame always receive energy on average. Conversely, within the flame brush, energy is drained on average from the subfilter scales by convective and pressure-gradient effects most intensely when the filter cutoff is larger than the characteristic flame scale.

Original languageEnglish (US)
Pages (from-to)78-116
Number of pages39
Journaljournal of fluid mechanics
StatePublished - Aug 10 2018


  • compressible turbulence
  • turbulence simulation
  • turbulent reacting flows

ASJC Scopus subject areas

  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering


Dive into the research topics of 'Spatially localized multi-scale energy transfer in turbulent premixed combustion'. Together they form a unique fingerprint.

Cite this