TY - GEN
T1 - Sonic Millip3De with dynamic receive focusing and apodization optimization
AU - Sampson, Richard
AU - Yang, Ming
AU - Wei, Siyuan
AU - Chakrabarti, Chaitali
AU - Wenisch, Thomas F.
PY - 2013
Y1 - 2013
N2 - 3D ultrasound is becoming common for non-invasive medical imaging because of its accuracy, safety, and ease of use. However, the extreme computational requirements (and associated power requirements) of image formation for a large 3D system have, to date, precluded hand-held 3D-capable devices. Sonic Millip3De is a recently proposed hardware design that leverages modern computer architecture techniques, such as 3D die stacking, massive parallelism, and streaming data flow, to enable high-resolution synthetic aperture 3D ultrasound imaging in a single, low-power chip. In this paper, we enhance Sonic Millip3De with a new virtual source firing sequence and dynamic receive focusing scheme to optimize receive apertures in multiple depth focal zones. These enhancements further reduce power requirements while maintaining image quality over a large depth range. We present image quality analysis using Field II simulations of cysts in tissue at varying depths to show that our methods do not degrade CNR relative to an ideal system with no power constraints. Then, using RTL-level design for an industrial 45nm ASIC process, we demonstrate 3D synthetic aperture with 120×88 transducer array within a 15W full-system power budget (400x less than a conventional DSP solution). We project that continued semicondutor scaling will enable a sub-5W power budget in 16nm technology.
AB - 3D ultrasound is becoming common for non-invasive medical imaging because of its accuracy, safety, and ease of use. However, the extreme computational requirements (and associated power requirements) of image formation for a large 3D system have, to date, precluded hand-held 3D-capable devices. Sonic Millip3De is a recently proposed hardware design that leverages modern computer architecture techniques, such as 3D die stacking, massive parallelism, and streaming data flow, to enable high-resolution synthetic aperture 3D ultrasound imaging in a single, low-power chip. In this paper, we enhance Sonic Millip3De with a new virtual source firing sequence and dynamic receive focusing scheme to optimize receive apertures in multiple depth focal zones. These enhancements further reduce power requirements while maintaining image quality over a large depth range. We present image quality analysis using Field II simulations of cysts in tissue at varying depths to show that our methods do not degrade CNR relative to an ideal system with no power constraints. Then, using RTL-level design for an industrial 45nm ASIC process, we demonstrate 3D synthetic aperture with 120×88 transducer array within a 15W full-system power budget (400x less than a conventional DSP solution). We project that continued semicondutor scaling will enable a sub-5W power budget in 16nm technology.
UR - http://www.scopus.com/inward/record.url?scp=84894334249&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84894334249&partnerID=8YFLogxK
U2 - 10.1109/ULTSYM.2013.0144
DO - 10.1109/ULTSYM.2013.0144
M3 - Conference contribution
AN - SCOPUS:84894334249
SN - 9781467356862
T3 - IEEE International Ultrasonics Symposium, IUS
SP - 557
EP - 560
BT - 2013 IEEE International Ultrasonics Symposium, IUS 2013
T2 - 2013 IEEE International Ultrasonics Symposium, IUS 2013
Y2 - 21 July 2013 through 25 July 2013
ER -