Abstract
The addition of lead to diphenyl diselenide in ethylenediamine (en) or pyridine (py) allowed for the observation of the solvento complexes, (en)Pb(SePh)2 or (py)2Pb(SePh)2, respectively. Performing this reaction in dimethyl sulfoxide and subsequent crystallization was found to afford Pb(SePh)2. Inductively coupled plasma optical emission spectroscopy revealed a 1:2 lead to selenium ratio for all three complexes. Nuclear magnetic resonance spectroscopy confirms that Pb(SePh)2 is readily solubilized by ethylenediamine, and electrospray ionization mass spectrometry supports the presence of Pb(SePh)2 moieties in solution. Single-crystal X-ray diffraction analysis of the pyridine adduct, (py)2Pb(SePh)2, revealed a seesaw molecular geometry featuring equatorial phenylselenolate ligands. Crystals of Pb(SePh)2 grown from dimethyl sulfoxide revealed one-dimensional polymeric chains of Pb(SePh)2. We believe that the lead(II) phenylselenolate complexes form via an oxidative addition reaction.
Original language | English (US) |
---|---|
Pages (from-to) | 1949-1955 |
Number of pages | 7 |
Journal | ACS Omega |
Volume | 5 |
Issue number | 4 |
DOIs | |
State | Published - Feb 4 2020 |
ASJC Scopus subject areas
- General Chemistry
- General Chemical Engineering
Fingerprint
Dive into the research topics of 'Solution and Solid-State Characterization of PbSe Precursors'. Together they form a unique fingerprint.Datasets
-
CCDC 1955117: Experimental Crystal Structure Determination
Vartak, P. B. (Contributor), Wang, Z. (Contributor), Groy, T. L. (Contributor), Trovitch, R. J. (Contributor) & Wang, R. Y. (Contributor), The Cambridge Structural Database, 2020
DOI: 10.5517/ccdc.csd.cc23mg9j, http://www.ccdc.cam.ac.uk/services/structure_request?id=doi:10.5517/ccdc.csd.cc23mg9j&sid=DataCite
Dataset