Sliding mode control for heart rate regulation of electric bicycle riders

Daniel Meyer, Wenlong Zhang, Masayoshi Tomizuka

    Research output: Chapter in Book/Report/Conference proceedingConference contribution

    13 Scopus citations

    Abstract

    In this paper a new controller for electric bicycles is proposed to maintain a desired heart rate level and improve the riding experience of cyclists. The controller achieves this by adequately adjusting the motor assistance without affecting the cycling velocity. First, a human heart rate model is fitted to experimental data to model the heart rate response of cyclists during different exercises. Then, a sliding mode controller is designed to keep the human heart rate at a predefined level. Furthermore, a feedforward controller is introduced into the system to improve both the tracking performance and riding experience. The feedforward controller consists of an inverse human heart rate response model, which estimates the necessary rider torque for a desired heart rate level. The controller is implemented with a commercial electric bicycle. Simulation and experimental results are presented to assess the validity of the controller. Whereas the sliding mode controller itself achieves good tracking performance, the sliding mode control combined with the feedforward control additionally reduces the maximal exerted rider torque and improves the riding experience.

    Original languageEnglish (US)
    Title of host publicationDiagnostics and Detection; Drilling; Dynamics and Control of Wind Energy Systems; Energy Harvesting; Estimation and Identification; Flexible and Smart Structure Control; Fuels Cells/Energy Storage; Human Robot Interaction; HVAC Building Energy Management; Industrial Applications; Intelligent Transportation Systems; Manufacturing; Mechatronics; Modelling and Validation; Motion and Vibration Control Applications
    PublisherAmerican Society of Mechanical Engineers
    Volume2
    ISBN (Electronic)9780791857250
    DOIs
    StatePublished - 2015
    EventASME 2015 Dynamic Systems and Control Conference, DSCC 2015 - Columbus, United States
    Duration: Oct 28 2015Oct 30 2015

    Other

    OtherASME 2015 Dynamic Systems and Control Conference, DSCC 2015
    Country/TerritoryUnited States
    CityColumbus
    Period10/28/1510/30/15

    ASJC Scopus subject areas

    • Industrial and Manufacturing Engineering
    • Mechanical Engineering
    • Control and Systems Engineering

    Fingerprint

    Dive into the research topics of 'Sliding mode control for heart rate regulation of electric bicycle riders'. Together they form a unique fingerprint.

    Cite this