Abstract
We report the development of a simple chemical route to growing Ge1-xSnx semiconductors using ultrahigh-vacuum chemical vapor deposition and the molecular precursor (Ph)SnD3 as the source of Sn atoms. Thin films were deposited on oxidized and oxide-free Si by reactions of (Ph)SnD3 with Ge2H6 at 350°C. The composition, microstructure, and bonding properties of the films were characterized by Rutherford backscattering, high-resolution analytical electron microscopy, and Raman spectroscopy. As-deposited Ge1-xSnx on oxidized Si displayed good crystallinity which improved significantly by annealing at 400°C. High-resolution electron microscopy and diffraction indicated a diamond-cubic structure with lattice constants intermediate to those of Ge and α-Sn. As-deposited Ge1-xSnx on pure Si was monocrystalline and epitaxial. Nanoprobe analysis in plan view and cross section revealed that the as-deposited and annealed materials were homogeneous with good chemical purity. The Raman spectra showed bands corresponding to Ge-Ge and Sn-Ge vibrations with frequencies consistent with a random tetrahedral alloy.
Original language | English (US) |
---|---|
Pages (from-to) | 3607-3609 |
Number of pages | 3 |
Journal | Applied Physics Letters |
Volume | 78 |
Issue number | 23 |
DOIs | |
State | Published - Jun 4 2001 |
ASJC Scopus subject areas
- Physics and Astronomy (miscellaneous)