Scene Graph Driven Text-Prompt Generation for Image Inpainting

Tripti Shukla, Paridhi Maheshwari, Rajhans Singh, Ankita Shukla, Kuldeep Kulkarni, Pavan Turaga

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Scopus citations

Abstract

Scene editing methods are undergoing a revolution, driven by text-to-image synthesis methods. Applications in media content generation have benefited from a careful set of engineered text prompts, that have been arrived at by the artists by trial and error. There is a growing need to better model prompt generation, for it to be useful for a broad range of consumer-grade applications. We propose a novel method for text prompt generation for the explicit purpose of consumer-grade image inpainting, i.e. insertion of new objects into missing regions in an image. Our approach leverages existing inter-object relationships to generate plausible textual descriptions for the missing object, that can then be used with any text-to-image generator. Given an image and a location where a new object is to be inserted, our approach first converts the given image to an intermediate scene graph. Then, we use graph convolutional networks to 'expand' the scene graph by predicting the identity and relationships of the new object to be inserted, with respect to the existing objects in the scene. The output of the expanded scene graph is cast into a textual description, which is then processed by a text-to-image generator, conditioned on the given image, to produce the final inpainted image. We conduct extensive experiments on the Visual Genome dataset, and show through qualitative and quantitative metrics that our method is superior to other methods.

Original languageEnglish (US)
Title of host publicationProceedings - 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2023
PublisherIEEE Computer Society
Pages759-768
Number of pages10
ISBN (Electronic)9798350302493
DOIs
StatePublished - 2023
Externally publishedYes
Event2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2023 - Vancouver, Canada
Duration: Jun 18 2023Jun 22 2023

Publication series

NameIEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops
Volume2023-June
ISSN (Print)2160-7508
ISSN (Electronic)2160-7516

Conference

Conference2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2023
Country/TerritoryCanada
CityVancouver
Period6/18/236/22/23

ASJC Scopus subject areas

  • Computer Vision and Pattern Recognition
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Scene Graph Driven Text-Prompt Generation for Image Inpainting'. Together they form a unique fingerprint.

Cite this