TY - GEN
T1 - SAN
T2 - 36th IEEE International Conference on Data Engineering, ICDE 2020
AU - Garg, Yash
AU - Candan, K. Selcuk
AU - Sapino, Maria Luisa
N1 - Publisher Copyright:
© 2020 IEEE.
PY - 2020/4
Y1 - 2020/4
N2 - Deep neural networks (DNNs), especially convolutional neural networks (CNNs), have been effective in various data-driven applications. Yet, DNNs suffer from several major challenges; in particular, in many applications where the input data is relatively sparse, DNNs face the problems of overfitting to the input data and poor generalizability. This brings up several critical questions: "Are all inputs equally important" "Can we selectively focus on parts of the input data in a way that reduces overfitting to irrelevant observations" Recently, attention networks showed some success in helping the overall process focus onto parts of the data that carry higher importance in the current context. Yet, we note that the current attention network design approaches are not sufficiently informed about the key data characteristics in identifying salient regions in the data. We propose an innovative robust feature learning framework, scale-invariant attention networks (SAN), that identifies salient regions in the input data for the CNN to focus on. Unlike the existing attention networks, SAN concentrates attention on parts of the data where there is major change across space and scale. We argue, and experimentally show, that the salient regions identified by SAN lead to better network performance compared to state-of-the-art (attentioned and non-attentioned) approaches, including architectures such as LeNet, VGG, ResNet, and LSTM, with common benchmark datasets, MNIST, FMNIST, CIFAR10/20/100, GTSRB, ImageNet, Mocap, Aviage, and GTSDB for tasks such as image/time series classification, time series forecasting and object detection in images.
AB - Deep neural networks (DNNs), especially convolutional neural networks (CNNs), have been effective in various data-driven applications. Yet, DNNs suffer from several major challenges; in particular, in many applications where the input data is relatively sparse, DNNs face the problems of overfitting to the input data and poor generalizability. This brings up several critical questions: "Are all inputs equally important" "Can we selectively focus on parts of the input data in a way that reduces overfitting to irrelevant observations" Recently, attention networks showed some success in helping the overall process focus onto parts of the data that carry higher importance in the current context. Yet, we note that the current attention network design approaches are not sufficiently informed about the key data characteristics in identifying salient regions in the data. We propose an innovative robust feature learning framework, scale-invariant attention networks (SAN), that identifies salient regions in the input data for the CNN to focus on. Unlike the existing attention networks, SAN concentrates attention on parts of the data where there is major change across space and scale. We argue, and experimentally show, that the salient regions identified by SAN lead to better network performance compared to state-of-the-art (attentioned and non-attentioned) approaches, including architectures such as LeNet, VGG, ResNet, and LSTM, with common benchmark datasets, MNIST, FMNIST, CIFAR10/20/100, GTSRB, ImageNet, Mocap, Aviage, and GTSDB for tasks such as image/time series classification, time series forecasting and object detection in images.
KW - Attention module
KW - Attention networks
KW - Convolutional neural networks
UR - http://www.scopus.com/inward/record.url?scp=85085860849&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85085860849&partnerID=8YFLogxK
U2 - 10.1109/ICDE48307.2020.00079
DO - 10.1109/ICDE48307.2020.00079
M3 - Conference contribution
AN - SCOPUS:85085860849
T3 - Proceedings - International Conference on Data Engineering
SP - 853
EP - 864
BT - Proceedings - 2020 IEEE 36th International Conference on Data Engineering, ICDE 2020
PB - IEEE Computer Society
Y2 - 20 April 2020 through 24 April 2020
ER -