Role of signal sequence in vaccine-induced protection against experimental coccidioidomycosis

Chengyong Jiang, D. Mitchell Magee, F. Douglas Ivey, Rebecca A. Cox

Research output: Contribution to journalArticlepeer-review

32 Scopus citations


The vaccine efficacy of the gene sequence encoding the signal peptide of the antigen known as antigen 2 or proline-rich antigen (Ag2/PRA), an immunodominant antigen present in the cell wall of the fungal pathogen Coccidioides immitis, was investigated in a murine model of coccidioidomycosis. Expression plasmids for Ag2/PRA(1-18) DNA (signal sequence), Ag2/PRA(19-194) DNA (lacking the signal sequence), and Ag2/PRA(1-194) DNA (full length) were inserted in the pVR1012 vector, and the constructs were used to vaccinate the highly susceptible BALB/c mouse strain. Immunization with the signal gene sequence significantly reduced the fungal burden in the lungs and spleens of mice 12 days after intraperitoneal challenge with a lethal dose of 2,500 C. immitis arthroconidia, to a level comparable to the protection induced in mice immunized with the full-length Ag2/PRA(1-194) DNA. The Ag2/PRA(19-194) gene protected mice but to a significantly lower level than the signal sequence or the full-length Ag2 gene. The immunizing capacity of Ag2/PRA(1-18) was not attributable to a nonspecific immunostimulatory effect of DNA, as evidenced by the fact that mice immunized with a frameshift mutation of Ag2/PRA(1-18) were not protected against challenge. Furthermore, a synthetic peptide corresponding to the translated sequence of Ag2/PRA(1-18) DNA protected mice, albeit at a lower level than the Ag2/PRA(1-18) DNA vaccine. The protection induced with the signal gene vaccine correlated with the production of gamma interferon when splenocytes from Ag2/PRA(1-18)-immunized mice were stimulated with recombinant full-length Ag2 and was not associated with the production of anti-Coccidioides immunoglobulin G antibody. This is the first study to establish that a signal peptide sequence alone, administered as a gene vaccine or synthetic peptide, can induce protective immunity against a microbial pathogen.

Original languageEnglish (US)
Pages (from-to)3539-3545
Number of pages7
JournalInfection and immunity
Issue number7
StatePublished - 2002
Externally publishedYes

ASJC Scopus subject areas

  • Parasitology
  • Microbiology
  • Immunology
  • Infectious Diseases


Dive into the research topics of 'Role of signal sequence in vaccine-induced protection against experimental coccidioidomycosis'. Together they form a unique fingerprint.

Cite this