Resolution effects and enslaved finite-difference schemes for a double gyre, shallow-water model

Donald Jones, Andrew C. Poje, Len G. Margolin

Research output: Contribution to journalArticlepeer-review

11 Scopus citations


We study numerical solutions of the reduced-gravity shallow-water equation on a beta plane, subjected to a sinusoidally varying wind forcing leading to the formation of a double gyre circulation. As expected the dynamics of the numerical solutions are highly dependent on the grid resolution and the given numerical algorithm. In particular, the statistics of the solutions are critically dependent on the scheme's ability to resolve the Rossby deformation radius. We present a method, applicable to any finite-difference scheme, which effectively increases the spatial resolution of the given algorithm without changing its temporal stability or memory requirements. This enslaving method makes use of properties of the governing equations in the absence of time derivatives to reduce the overall truncation error. By examining statistical measures of stochastic solutions at resolutions near the Rossby radius, we show that the enslaved schemes are capable of reproducing statistics of standard schemes computed at twice the resolution.

Original languageEnglish (US)
Pages (from-to)269-280
Number of pages12
JournalTheoretical and Computational Fluid Dynamics
Issue number3-4
StatePublished - Jan 1 1997

ASJC Scopus subject areas

  • Computational Mechanics
  • Condensed Matter Physics
  • General Engineering
  • Fluid Flow and Transfer Processes


Dive into the research topics of 'Resolution effects and enslaved finite-difference schemes for a double gyre, shallow-water model'. Together they form a unique fingerprint.

Cite this