Abstract
To develop effective control strategies to enhance the robustness of multilayer networks against large-scale failures is of significant value. We articulate the idea of 'remote control' whereby adaptive perturbations to one network layer are able to enhance the resilience of not only itself but also other interconnected network layers. We analyze the principle of remote control using percolation dynamics by showing analytically and numerically that, with the adaptive generation of a small number of new links in the control layer, not only is this layer but also other layers become dramatically more resistant to cascading failures. We also find that remote control is more effective for scale-free than for random networks. Remote intervention of multilayer network systems through adaptation has real-world applications, which we illustrate using the rail and coach transportation system in the Great Britain.
Original language | English (US) |
---|---|
Article number | 045002 |
Journal | New Journal of Physics |
Volume | 21 |
Issue number | 4 |
DOIs | |
State | Published - Apr 12 2019 |
Keywords
- cascading failure
- multilayer network
- percolation
- remote control
ASJC Scopus subject areas
- Physics and Astronomy(all)
Fingerprint
Dive into the research topics of 'Remote control of cascading dynamics on complex multilayer networks'. Together they form a unique fingerprint.Cite this
- APA
- Standard
- Harvard
- Vancouver
- Author
- BIBTEX
- RIS
In: New Journal of Physics, Vol. 21, No. 4, 045002, 12.04.2019.
Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Remote control of cascading dynamics on complex multilayer networks
AU - Liu, Run Ran
AU - Jia, Chun Xiao
AU - Lai, Ying Cheng
N1 - Funding Information: Run-Ran Liu Chun-Xiao Jia Ying-Cheng Lai Run-Ran Liu Chun-Xiao Jia Ying-Cheng Lai Alibaba Research Center for Complexity Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, People’s Republic of China School of Electrical, Computer, and Energy Engineering, Arizona State University, Tempe, AZ 85287, United States of America Department of Physics, Arizona State University, Tempe, AZ 85287, United States of America Author to whom any correspondence should be addressed. Run-Ran Liu, Chun-Xiao Jia and Ying-Cheng Lai 2019-04-01 2019-04-12 13:51:07 cgi/release: Article released bin/incoming: New from .zip Original content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence . Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. National Natural Science Foundation of China https://doi.org/10.13039/501100001809 61673150 61773148 ONR N00014-16-1-2828 yes To develop effective control strategies to enhance the robustness of multilayer networks against large-scale failures is of significant value. We articulate the idea of ‘remote control’ whereby adaptive perturbations to one network layer are able to enhance the resilience of not only itself but also other interconnected network layers. We analyze the principle of remote control using percolation dynamics by showing analytically and numerically that, with the adaptive generation of a small number of new links in the control layer, not only is this layer but also other layers become dramatically more resistant to cascading failures. We also find that remote control is more effective for scale-free than for random networks. Remote intervention of multilayer network systems through adaptation has real-world applications, which we illustrate using the rail and coach transportation system in the Great Britain. � 2019 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft [1] Albert R, Jeong H and Barabási A L 2000 Nature 406 378–82 10.1038/35019019 Albert R, Jeong H and Barabási A L Nature 406 2000 378 382 [2] Cohen R, Erez K B, Avraham D and Havlin S 2001 Phys. Rev. Lett. 86 3682–5 10.1103/PhysRevLett.86.3682 Cohen R, Erez K B, Avraham D and Havlin S Phys. Rev. Lett. 86 2001 3682 3685 [3] Callaway D S, Newman M E J, Strogatz S H and Watts D J 2000 Phys. Rev. Lett. 85 5468–71 10.1103/PhysRevLett.85.5468 Callaway D S, Newman M E J, Strogatz S H and Watts D J Phys. Rev. Lett. 85 2000 5468 5471 [4] Watts D J 2002 Proc. Natl Acad. Sci. 99 5766–71 10.1073/pnas.082090499 Watts D J Proc. Natl Acad. Sci. 0027-8424 99 2002 5766 5771 [5] Holme P and Kim B J 2002 Phys. Rev. E 65 066109 10.1103/PhysRevE.65.066109 Holme P and Kim B J Phys. Rev. 1063-651X 65 E 066109 2002 [6] Moreno Y, Gómez J B and Pacheco A F 2002 Europhys. Lett. 58 630–3 10.1209/epl/i2002-00442-2 Moreno Y, Gómez J B and Pacheco A F Europhys. Lett. 0295-5075 58 4 630 2002 630 633 [7] Holme P 2002 Phys. Rev. E 66 036119 10.1103/PhysRevE.66.036119 Holme P Phys. Rev. 1063-651X 66 E 036119 2002 [8] Motter A E and Lai Y C 2002 Phys. Rev. E 66 065102(R) 10.1103/PhysRevE.66.065102 Motter A E and Lai Y C Phys. Rev. 1063-651X 66 E 065102(R) 2002 [9] Moreno Y, Pastor-Satorras R, Vázquez A and Vespignani A 2003 Europhys. Lett. 62 292–8 10.1209/epl/i2003-00140-7 Moreno Y, Pastor-Satorras R, Vázquez A and Vespignani A Europhys. Lett. 0295-5075 62 2 292 2003 292 298 [10] Goh K I, Ghim C M, Kahng B and Kim D 2003 Phys. Rev. Lett. 91 189804 10.1103/PhysRevLett.91.189804 Goh K I, Ghim C M, Kahng B and Kim D Phys. Rev. Lett. 91 189804 2003 [11] Valente A X C N, Sarkar A and Stone H A 2004 Phys. Rev. Lett. 92 118702 10.1103/PhysRevLett.92.118702 Valente A X C N, Sarkar A and Stone H A Phys. Rev. Lett. 92 118702 2004 [12] Crucitti P, Latora V and Marchior M 2004 Phys. Rev. E 69 045104(R) 10.1103/PhysRevE.69.045104 Crucitti P, Latora V and Marchior M Phys. Rev. 1063-651X 69 E 045104(R) 2004 [13] Zhao L, Park K and Lai Y C 2004 Phys. Rev. E 70 035101(R) 10.1103/PhysRevE.70.035101 Zhao L, Park K and Lai Y C Phys. Rev. 1063-651X 70 E 035101(R) 2004 [14] Paul G, Sreenivasan S and Stanley H E 2005 Phys. Rev. E 72 056130 10.1103/PhysRevE.72.056130 Paul G, Sreenivasan S and Stanley H E Phys. Rev. 1063-651X 72 E 056130 2005 [15] Zhao L, Park K, Lai Y C and Ye N 2005 Phys. Rev. E 72 025104(R) 10.1103/PhysRevE.72.025104 Zhao L, Park K, Lai Y C and Ye N Phys. Rev. 1063-651X 72 E 025104(R) 2005 [16] Park K, Lai Y C, Zhao L and Ye N 2005 Phys. Rev. E 71 065105 10.1103/PhysRevE.71.065105 Park K, Lai Y C, Zhao L and Ye N Phys. Rev. 1063-651X 71 E 065105 2005 [17] Huang L, Lai Y C and Chen G 2008 Phys. Rev. E 78 036116 10.1103/PhysRevE.78.036116 Huang L, Lai Y C and Chen G Phys. Rev. 1063-651X 78 E 036116 2008 [18] Yang R, Wang W X, Lai Y C and Chen G 2009 Phys. Rev. E 79 026112 10.1103/PhysRevE.79.026112 Yang R, Wang W X, Lai Y C and Chen G Phys. Rev. 1063-651X 79 E 026112 2009 [19] Liu R R, Wang W X, Lai Y C and Wang B H 2012 Phys. Rev. E 85 026110 10.1103/PhysRevE.85.026110 Liu R R, Wang W X, Lai Y C and Wang B H Phys. Rev. 1063-651X 85 E 026110 2012 [20] Lai Y C, Motter A, Nishikawa T, Park K and Zhao L 2005 Pramana 64 483–502 10.1007/BF02706197 Lai Y C, Motter A, Nishikawa T, Park K and Zhao L Pramana 0304-4289 64 2005 483 502 [21] Kitsak M, Ganin A A, Eisenberg D A, Krapivsky P L, Krioukov D, Alderson D L and Linkov I 2018 Phys. Rev. E 97 012309 10.1103/PhysRevE.97.012309 Kitsak M, Ganin A A, Eisenberg D A, Krapivsky P L, Krioukov D, Alderson D L and Linkov I Phys. Rev. 1063-651X 97 E 012309 2018 [22] Gallos L K and Fefferman N H 2015 Phys. Rev. E 92 052806 10.1103/PhysRevE.92.052806 Gallos L K and Fefferman N H Phys. Rev. 1063-651X 92 E 052806 2015 [23] Parshani R, Buldyrev S V and Havlin S 2010 Phys. Rev. Lett. 105 048701 10.1103/PhysRevLett.105.048701 Parshani R, Buldyrev S V and Havlin S Phys. Rev. Lett. 105 048701 2010 [24] Buldyrev S V, Parshani R, Paul G, Stanley H E and Havlin S 2010 Nature 464 1025–8 10.1038/nature08932 Buldyrev S V, Parshani R, Paul G, Stanley H E and Havlin S Nature 464 2010 1025 1028 [25] Parshani R, Buldyrev S V and Havlin S 2011 Proc. Natl Acad. Sci. 108 1007–10 10.1073/pnas.1008404108 Parshani R, Buldyrev S V and Havlin S Proc. Natl Acad. Sci. 0027-8424 108 2011 1007 1010 [26] Kivelä M, Arenas A, Barthelemy M, Gleeson J P, Moreno Y and Porter M A 2014 J. Complex Net. 2 203–71 10.1093/comnet/cnu016 Kivelä M, Arenas A, Barthelemy M, Gleeson J P, Moreno Y and Porter M A J. Complex Net. 2 2014 203 271 [27] Gao J, Buldyrev S V, Havlin S and Stanley H E 2011 Phys. Rev. Lett. 107 195701 10.1103/PhysRevLett.107.195701 Gao J, Buldyrev S V, Havlin S and Stanley H E Phys. Rev. Lett. 107 195701 2011 [28] Gao J, Buldyrev S V, Stanley H E and Havlin S 2012 Nat. Phys. 8 40–8 10.1038/nphys2180 Gao J, Buldyrev S V, Stanley H E and Havlin S Nat. Phys. 8 2012 40 48 [29] Liu R R, Eisenberg D A, Seager T P and Lai Y C 2018 Sci. Rep. 8 2111 10.1038/s41598-018-20019-7 Liu R R, Eisenberg D A, Seager T P and Lai Y C Sci. Rep. 8 2018 2111 [30] Szell M, Lambiotte R and Thurner S 2010 Proc. Natl Acad. Sci. 107 13636–41 10.1073/pnas.1004008107 Szell M, Lambiotte R and Thurner S Proc. Natl Acad. Sci. 0027-8424 107 2010 13636 13641 [31] Du W B, Zhou X L, Lordan O, Wang Z, Zhao C and Zhu Y B 2016 Transp. Res. E 89 108–16 10.1016/j.tre.2016.03.009 Du W B, Zhou X L, Lordan O, Wang Z, Zhao C and Zhu Y B Transp. Res. 89 E 2016 108 116 [32] Klosik D F, Grimbs A, Bornholdt S and Htt M T 2017 Nat. Commun. 8 534 10.1038/s41467-017-00587-4 Klosik D F, Grimbs A, Bornholdt S and Htt M T Nat. Commun. 8 2017 534 [33] Rinaldi S M, Peerenboom J P and Kelly T K 2001 IEEE Control Syst. 21 11–25 10.1109/37.969131 Rinaldi S M, Peerenboom J P and Kelly T K IEEE Control Syst. 1066-033X 21 2001 11 25 [34] Shaw L B and Schwartz I B 2010 Phys. Rev. E 81 046120 10.1103/PhysRevE.81.046120 Shaw L B and Schwartz I B Phys. Rev. 1063-651X 81 E 046120 2010 [35] Zhao D W, Wang L H, Wang Z, Wang L and Gao B 2014 PLoS One 9 e112018 10.1371/journal.pone.0112018 Zhao D W, Wang L H, Wang Z, Wang L and Gao B PLoS One 9 e112018 2014 [36] Havlin S, Stanley H E, Bashan A, Gao J and Kenett D Y 2015 Chaos Solitons Fractals 72 4–19 10.1016/j.chaos.2014.09.006 Havlin S, Stanley H E, Bashan A, Gao J and Kenett D Y Chaos Solitons Fractals 0960-0779 72 2015 4 19 [37] Broadbent S R and Hammersley J M 1957 Proc. Camb. Phil. Soc. 53 629–41 10.1017/S0305004100032680 Broadbent S R and Hammersley J M Proc. Camb. Phil. Soc. 0008-1981 53 1957 629 641 [38] Kirkpatrick S 1973 Rev. Mod. Phys. 45 574–88 10.1103/RevModPhys.45.574 Kirkpatrick S Rev. Mod. Phys. 0034-6861 45 1973 574 588 [39] Kesten H 1982 Percolation Theory for Mathematicians (Boston, MA: Birkhäuser) 10.1007/978-1-4899-2730-9 Kesten H Percolation Theory for Mathematicians 1982 [40] Stauffer D and Aharony A 1992 Introduction to Percolation Theory (London: Taylor and Francis) 10.1201/9781315274386 Stauffer D and Aharony A Introduction to Percolation Theory 1992 [41] Hackett A, Cellai D, Gómez S, Arenas A and Gleeson J P 2016 Phys. Rev. X 6 021002 10.1103/PhysRevX.6.021002 Hackett A, Cellai D, Gómez S, Arenas A and Gleeson J P Phys. Rev. 6 X 021002 2016 [42] Huang X, Gao J, Buldyrev S V, Havlin S and Stanley H E 2011 Phys. Rev. E 83 065101 10.1103/PhysRevE.83.065101 Huang X, Gao J, Buldyrev S V, Havlin S and Stanley H E Phys. Rev. 1063-651X 83 E 065101 2011 [43] Shao S, Huang X, Stanley H E and Havlin S 2015 New J. Phys. 17 023049 10.1088/1367-2630/17/2/023049 Shao S, Huang X, Stanley H E and Havlin S New J. Phys. 1367-2630 17 2 023049 2015 [44] Lombardi A and Hörnquist M 2007 Phys. Rev. E 75 056110 10.1103/PhysRevE.75.056110 Lombardi A and Hörnquist M Phys. Rev. 1063-651X 75 E 056110 2007 [45] Liu B, Chu T, Wang L and Xie G 2008 IEEE Trans. Autom. Control 53 1009–13 10.1109/TAC.2008.919548 Liu B, Chu T, Wang L and Xie G IEEE Trans. Autom. Control 0018-9286 53 2008 1009 1013 [46] Rahmani A, Ji M, Mesbahi M and Egerstedt M 2009 SIAM J. Control Optim. 48 162–86 10.1137/060674909 Rahmani A, Ji M, Mesbahi M and Egerstedt M SIAM J. Control Optim. 48 2009 162 186 [47] Liu Y Y, Slotine J J and Barabási A L 2011 Nature 473 167–73 10.1038/nature10011 Liu Y Y, Slotine J J and Barabási A L Nature 473 2011 167 173 [48] Wang W X, Ni X, Lai Y C and Grebogi C 2012 Phys. Rev. E 85 026115 10.1103/PhysRevE.85.026115 Wang W X, Ni X, Lai Y C and Grebogi C Phys. Rev. 1063-651X 85 E 026115 2012 [49] Nacher J C and Akutsu T 2012 New J. Phys. 14 073005 10.1088/1367-2630/14/7/073005 Nacher J C and Akutsu T New J. Phys. 1367-2630 14 7 073005 2012 [50] Yan G, Ren J, Lai Y C, Lai C H and Li B 2012 Phys. Rev. Lett. 108 218703 10.1103/PhysRevLett.108.218703 Yan G, Ren J, Lai Y C, Lai C H and Li B Phys. Rev. Lett. 108 218703 2012 [51] Nepusz T and Vicsek T 2012 Nat. Phys. 8 568–73 10.1038/nphys2327 Nepusz T and Vicsek T Nat. Phys. 8 2012 568 573 [52] Yuan Z, Zhao C, Di Z, Wang W X and Lai Y C 2013 Nat. Commun. 4 2447 10.1038/ncomms3447 Yuan Z, Zhao C, Di Z, Wang W X and Lai Y C Nat. Commun. 4 2013 2447 [53] Delpini D, Battiston S, Riccaboni M, Gabbi G, Pammolli F and Caldarelli G 2013 Sci. Rep. 3 1626 10.1038/srep01626 Delpini D, Battiston S, Riccaboni M, Gabbi G, Pammolli F and Caldarelli G Sci. Rep. 3 2013 1626 [54] Nacher J C and Akutsu T 2013 Sci. Rep. 3 1647 10.1038/srep01647 Nacher J C and Akutsu T Sci. Rep. 3 2013 1647 [55] Menichetti G, Dall’Asta L and Bianconi G 2014 Phys. Rev. Lett. 113 078701 10.1103/PhysRevLett.113.078701 Menichetti G, Dall’Asta L and Bianconi G Phys. Rev. Lett. 113 078701 2014 [56] Ruths J and Ruths D 2014 Science 343 1373–6 10.1126/science.1242063 Ruths J and Ruths D Science 343 2014 1373 1376 [57] Wuchty S 2014 Proc. Natl Acad. Sci. 111 7156–60 10.1073/pnas.1311231111 Wuchty S Proc. Natl Acad. Sci. 0027-8424 111 2014 7156 7160 [58] Yuan Z Z, Zhao C, Wang W X, Di Z R and Lai Y C 2014 New J. Phys. 16 103036 10.1088/1367-2630/16/10/103036 Yuan Z Z, Zhao C, Wang W X, Di Z R and Lai Y C New J. Phys. 1367-2630 16 10 103036 2014 [59] Pasqualetti F, Zampieri S and Bullo F 2014 IEEE Trans. Control Netw. Syst. 1 40–52 10.1109/TCNS.2014.2310254 Pasqualetti F, Zampieri S and Bullo F IEEE Trans. Control Netw. Syst. 1 2014 40 52 [60] Xiao Y D, Lao S Y, Hou L L and Bai L 2014 Phys. Rev. E 90 042804 10.1103/PhysRevE.90.042804 Xiao Y D, Lao S Y, Hou L L and Bai L Phys. Rev. 1063-651X 90 E 042804 2014 [61] Sorrentino F 2014 Chaos 17 033101 10.1063/1.2743098 Sorrentino F Chaos 17 033101 2014 [62] Wu F X, Wu L, Wang J X, Liu J and Chen L N 2014 Sci. Rep. 4 4819 10.1038/srep04819 Wu F X, Wu L, Wang J X, Liu J and Chen L N Sci. Rep. 4 2014 4819 [63] Whalen A J, Brennan S N, Sauer T D and Schiff S J 2015 Phys. Rev. X 5 011005 10.1103/PhysRevX.5.011005 Whalen A J, Brennan S N, Sauer T D and Schiff S J Phys. Rev. 5 X 011005 2015 [64] Yan G, Tsekenis G, Barzel B, Slotine J J, Liu Y Y and Barabási A L 2015 Nat. Phys. 11 779 10.1038/nphys3422 Yan G, Tsekenis G, Barzel B, Slotine J J, Liu Y Y and Barabási A L Nat. Phys. 11 2015 779 [65] Nacher J C and Akutsu T 2015 Phys. Rev. E 91 012826 10.1103/PhysRevE.91.012826 Nacher J C and Akutsu T Phys. Rev. 1063-651X 91 E 012826 2015 [66] Summers T H, Cortesi F L and Lygeros J 2015 IEEE Trans. Control Netw. Syst. 3 91–101 10.1109/TCNS.2015.2453711 Summers T H, Cortesi F L and Lygeros J IEEE Trans. Control Netw. Syst. 3 2015 91 101 [67] Iudice F L, Garofalo F and Sorrentino F 2015 Nat. Commun. 6 8349 10.1038/ncomms9349 Iudice F L, Garofalo F and Sorrentino F Nat. Commun. 6 2015 8349 [68] Chen Y Z, Wang L Z, Wang W X and Lai Y C 2016 R. Soc. Open Sci. 3 160064 10.1098/rsos.160064 Chen Y Z, Wang L Z, Wang W X and Lai Y C R. Soc. Open Sci. 3 160064 2016 [69] Wang L Z, Chen Y Z, Wang W X and Lai Y C 2017 Sci. Rep. 7 40198 10.1038/srep40198 Wang L Z, Chen Y Z, Wang W X and Lai Y C Sci. Rep. 7 2017 40198 [70] Klickstein I, Shirin A and Sorrentino F 2017 Nat. Commun. 8 15145 10.1038/ncomms15145 Klickstein I, Shirin A and Sorrentino F Nat. Commun. 8 2017 15145 [71] Wang X F and Chen G 2002 Physica A 310 521–31 10.1016/S0378-4371(02)00772-0 Wang X F and Chen G Physica 0378-4371 310 A 2002 521 531 [72] Fiedler B, Mochizuki A, Kurosawa G and Saito D 2013 J. Dyn. Differ. Equ. 25 563–604 10.1007/s10884-013-9312-7 Fiedler B, Mochizuki A, Kurosawa G and Saito D J. Dyn. Differ. Equ. 1040-7294 25 2013 563 604 [73] Mochizuki A, Fiedler B, Kurosawa G and Saito D 2013 J. Theor. Biol. 335 130–46 10.1016/j.jtbi.2013.06.009 Mochizuki A, Fiedler B, Kurosawa G and Saito D J. Theor. Biol. 335 2013 130 146 [74] Wells D K, Kath W L and Motter A E 2015 Phys. Rev. X 5 031036 10.1103/PhysRevX.5.031036 Wells D K, Kath W L and Motter A E Phys. Rev. 5 X 031036 2015 [75] Wang L Z, Su R Q, Huang Z G, Wang X, Wang W X, Grebogi C and Lai Y C 2016 Nat. Commun. 7 11323 10.1038/ncomms11323 Wang L Z, Su R Q, Huang Z G, Wang X, Wang W X, Grebogi C and Lai Y C Nat. Commun. 7 2016 11323 [76] Zañudo J G T, Yang G and Albert R 2017 Proc. Natl Acad. Sci. 114 7234–9 10.1073/pnas.1617387114 Zañudo J G T, Yang G and Albert R Proc. Natl Acad. Sci. 0027-8424 114 28 2017 7234 7239 [77] Klickstein I, Shirin A and Sorrentino F 2017 Phys. Rev. Lett. 119 268301 10.1103/PhysRevLett.119.268301 Klickstein I, Shirin A and Sorrentino F Phys. Rev. Lett. 119 268301 2017 [78] Sun Y Z, Leng S Y, Lai Y C, Grebogi C and Lin W 2017 Phys. Rev. Lett. 119 198301 10.1103/PhysRevLett.119.198301 Sun Y Z, Leng S Y, Lai Y C, Grebogi C and Lin W Phys. Rev. Lett. 119 198301 2017 [79] Ouyang M 2014 Reliab. Eng. Syst. Saf. 121 43–60 10.1016/j.ress.2013.06.040 Ouyang M Reliab. Eng. Syst. Saf. 0951-8320 121 2014 43 60 [80] Hu Y, Zhou D, Zhang R, Han Z, Rozenblat C and Havlin S 2013 Phys. Rev. E 88 052805 10.1103/PhysRevE.88.052805 Hu Y, Zhou D, Zhang R, Han Z, Rozenblat C and Havlin S Phys. Rev. 1063-651X 88 E 052805 2013 [81] Zhou D, Bashan A, Cohen R, Berezin Y, Shnerb N and Havlin S 2014 Phys. Rev. E 90 012803 10.1103/PhysRevE.90.012803 Zhou D, Bashan A, Cohen R, Berezin Y, Shnerb N and Havlin S Phys. Rev. 1063-651X 90 E 012803 2014 [82] Wang Z, Zhou D and Hu Y 2018 Phys. Rev. E 97 032306 10.1103/PhysRevE.97.032306 Wang Z, Zhou D and Hu Y Phys. Rev. 1063-651X 97 E 032306 2018 [83] Newman M E J 2002 Phys. Rev. E 66 016128 10.1103/PhysRevE.66.016128 Newman M E J Phys. Rev. 1063-651X 66 E 016128 2002 [84] Baxter G J, Dorogovtsev S N, Goltsev A V and Mendes J F F 2012 Phys. Rev. Lett. 109 248701 10.1103/PhysRevLett.109.248701 Baxter G J, Dorogovtsev S N, Goltsev A V and Mendes J F F Phys. Rev. Lett. 109 248701 2012 [85] Gallotti R and Barthelemy M 2015 Sci. Data 2 140056 10.1038/sdata.2014.56 Gallotti R and Barthelemy M Sci. Data 2 140056 2015 Publisher Copyright: © 2019 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft.
PY - 2019/4/12
Y1 - 2019/4/12
N2 - To develop effective control strategies to enhance the robustness of multilayer networks against large-scale failures is of significant value. We articulate the idea of 'remote control' whereby adaptive perturbations to one network layer are able to enhance the resilience of not only itself but also other interconnected network layers. We analyze the principle of remote control using percolation dynamics by showing analytically and numerically that, with the adaptive generation of a small number of new links in the control layer, not only is this layer but also other layers become dramatically more resistant to cascading failures. We also find that remote control is more effective for scale-free than for random networks. Remote intervention of multilayer network systems through adaptation has real-world applications, which we illustrate using the rail and coach transportation system in the Great Britain.
AB - To develop effective control strategies to enhance the robustness of multilayer networks against large-scale failures is of significant value. We articulate the idea of 'remote control' whereby adaptive perturbations to one network layer are able to enhance the resilience of not only itself but also other interconnected network layers. We analyze the principle of remote control using percolation dynamics by showing analytically and numerically that, with the adaptive generation of a small number of new links in the control layer, not only is this layer but also other layers become dramatically more resistant to cascading failures. We also find that remote control is more effective for scale-free than for random networks. Remote intervention of multilayer network systems through adaptation has real-world applications, which we illustrate using the rail and coach transportation system in the Great Britain.
KW - cascading failure
KW - multilayer network
KW - percolation
KW - remote control
UR - http://www.scopus.com/inward/record.url?scp=85067604482&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85067604482&partnerID=8YFLogxK
U2 - 10.1088/1367-2630/ab0e1a
DO - 10.1088/1367-2630/ab0e1a
M3 - Article
AN - SCOPUS:85067604482
SN - 1367-2630
VL - 21
JO - New Journal of Physics
JF - New Journal of Physics
IS - 4
M1 - 045002
ER -