Relativistic ultrafast electron diffraction at high repetition rates

K. M. Siddiqui, D. B. Durham, F. Cropp, F. Ji, S. Paiagua, C. Ophus, N. C. Andresen, L. Jin, J. Wu, S. Wang, X. Zhang, W. You, M. Murnane, M. Centurion, X. Wang, D. S. Slaughter, R. A. Kaindl, P. Musumeci, A. M. Minor, D. Filippetto

Research output: Contribution to journalArticlepeer-review

Abstract

The ability to resolve the dynamics of matter on its native temporal and spatial scales constitutes a key challenge and convergent theme across chemistry, biology, and materials science. The last couple of decades have witnessed ultrafast electron diffraction (UED) emerge as one of the forefront techniques with the sensitivity to resolve atomic motions. Increasingly sophisticated UED instruments are being developed that are aimed at increasing the beam brightness in order to observe structural signatures, but so far they have been limited to low average current beams. Here, we present the technical design and capabilities of the HiRES (High Repetition-rate Electron Scattering) instrument, which blends relativistic electrons and high repetition rates to achieve orders of magnitude improvement in average beam current compared to the existing state-of-the-art instruments. The setup utilizes a novel electron source to deliver femtosecond duration electron pulses at up to MHz repetition rates for UED experiments. Instrument response function of sub-500 fs is demonstrated with < 100 fs time resolution targeted in future. We provide example cases of diffraction measurements on solid-state and gas-phase samples, including both micro- and nanodiffraction (featuring 100 nm beam size) modes, which showcase the potential of the instrument for novel UED experiments.

Original languageEnglish (US)
Article number064302
JournalStructural Dynamics
Volume10
Issue number6
DOIs
StatePublished - Nov 1 2023
Externally publishedYes

ASJC Scopus subject areas

  • Radiation
  • Instrumentation
  • Condensed Matter Physics
  • Spectroscopy

Fingerprint

Dive into the research topics of 'Relativistic ultrafast electron diffraction at high repetition rates'. Together they form a unique fingerprint.

Cite this