Regolith of the Crater Floor Units, Jezero Crater, Mars: Textures, Composition, and Implications for Provenance

Alicia Vaughan, Michelle E. Minitti, Emily L. Cardarelli, Jeffrey R. Johnson, Linda C. Kah, Paolo Pilleri, Melissa S. Rice, Mark Sephton, Briony H.N. Horgan, Roger C. Wiens, R. Aileen Yingst, Maria Paz Zorzano Mier, Ryan Anderson, James F. Bell, Adrian J. Brown, Edward A. Cloutis, Agnes Cousin, Kenneth E. Herkenhoff, Elisabeth M. Hausrath, Alexander G. HayesKjartan Kinch, Marco Merusi, Chase C. Million, Robert Sullivan, Sandra M. Siljeström, Michael St. Clair

Research output: Contribution to journalArticlepeer-review

11 Scopus citations

Abstract

A multi-instrument study of the regolith of Jezero crater floor units by the Perseverance rover has identified three types of regolith: fine-grained, coarse-grained, and mixed-type. Mastcam-Z, Wide Angle Topographic Sensor for Operations and eNgineering, and SuperCam Remote Micro Imager were used to characterize the regolith texture, particle size, and roundedness where possible. Mastcam-Z multispectral and SuperCam laser-induced breakdown spectroscopy data were used to constrain the composition of the regolith types. Fine-grained regolith is found surrounding bedrock and boulders, comprising bedforms, and accumulating on top of rocks in erosional depressions. Spectral and chemical data show it is compositionally consistent with pyroxene and a ferric-oxide phase. Coarse-grained regolith consists of 1–2 mm well-sorted gray grains that are found concentrated around the base of boulders and bedrock, and armoring bedforms. Its chemistry and spectra indicate it is olivine-bearing, and its spatial distribution and roundedness indicate it has been transported, likely by saltation-induced creep. Coarse grains share similarities with the olivine grains observed in the Séítah formation bedrock, making that unit a possible source for these grains. Mixed-type regolith contains fine- and coarse-grained regolith components and larger rock fragments. The rock fragments are texturally and spectrally similar to bedrock within the Máaz and Séítah formations, indicating origins by erosion from those units, although they could also be a lag deposit from erosion of an overlying unit. The fine- and coarse-grained types are compared to their counterparts at other landing sites to inform global, regional, and local inputs to regolith formation within Jezero crater. The regolith characterization presented here informs the regolith sampling efforts underway by Perseverance.

Original languageEnglish (US)
Article numbere2022JE007437
JournalJournal of Geophysical Research: Planets
Volume128
Issue number3
DOIs
StatePublished - Mar 2023

ASJC Scopus subject areas

  • Geophysics
  • Geochemistry and Petrology
  • Earth and Planetary Sciences (miscellaneous)
  • Space and Planetary Science

Fingerprint

Dive into the research topics of 'Regolith of the Crater Floor Units, Jezero Crater, Mars: Textures, Composition, and Implications for Provenance'. Together they form a unique fingerprint.

Cite this