Regions of the Streptococcus sobrinus spaA gene encoding major determinants of antigen I

R. M. Goldschmidt, M. Thoren-Gorden, R. Curtiss

Research output: Contribution to journalArticlepeer-review

9 Scopus citations

Abstract

Surface protein antigen A (SpaA), also called antigen B, antigen I/II, or antigen P1, is an abundant cell envelope protein that is the major antigenic determinant of Streptococcus sobrinus and other members of the Streptococcus mutans group of cariogenic bacteria. This laboratory has previously reported the cloning and expression in Eschericha coli of a BamHI restriction fragment of S. sobrinus DNA containing most of the spaA gene (pYA726) and encoding antigen I. Regions of spaA encoding immunodeterminants of antigen I were analyzed by either deletion mapping or expressing selected restriction fragments from the trc promoter. SpaA protein produced by mutants harboring nested deletions, constructed by BAL 31 exonuclease treatment at a unique SstI site located towards the 3' end of the gene, were examined by Western immunoblot with rabbit serum agaiunst SpaA from S. sobrinus. Only SpaA polypeptides larger than 56 kilodaltons reacted with anti-SpaA serum. Various restriction fragments of the region of spaA encoding the antigenic determinants were cloned into an expression vector. The immunoreactive properties of the polypeptides encoded by those fragments indicated that expression of the immunodominant determinant required topographically assembled residues specified by noncontiguous regions located within 0.48-kilobase PvuII-to-SstI and 1.2-kilobase SstI-to-HindIII fragment which were adjacent on the spaA map.

Original languageEnglish (US)
Pages (from-to)3988-4001
Number of pages14
JournalJournal of bacteriology
Volume172
Issue number7
DOIs
StatePublished - 1990
Externally publishedYes

ASJC Scopus subject areas

  • Microbiology
  • Molecular Biology

Fingerprint

Dive into the research topics of 'Regions of the Streptococcus sobrinus spaA gene encoding major determinants of antigen I'. Together they form a unique fingerprint.

Cite this