Recent advances in molecular recognition based on nanoengineered platforms

Bin Mu, Jingqing Zhang, Thomas P. McNicholas, Nigel F. Reuel, Sebastian Kruss, Michael S. Strano

Research output: Contribution to journalArticlepeer-review

71 Scopus citations


Nanoparticles and nanoengineered platforms have great potential for technologies involving biomoleuclar detection or cell-related biosensing, and have provided effective chemical interfaces for molecular recognition. Typically, chemists work on the modification of synthetic polymers or macromolecules, which they link to the nanoparticles by covalent or noncovalent approaches. The motivation for chemical modification is to enhance the selectivity and sensitivity, and to improve the biocompatibility for the in vivo applications.In this Account, we present recent advances in the development and application of chemical interfaces for molecular recognition for nanoparticles and nanoengineered platforms, in particular single-walled carbon nanotubes (SWNTs). We discuss emerging approaches for recognizing small molecules, glycosylated proteins, and serum biomarkers. For example, we compare and discuss detection methods for ATP, NO, H2O2, and monosaccharides for recent nanomaterials. Fluorometric detection appears to have great potential for quantifying concentration gradients and determining their location in living cells.For macromolecular detection, new methods for glycoprofiling using such interfaces appear promising, and benefit specifically from the potential elimination of cumbersome labeling and liberation steps during conventional analysis of glycans, augmenting the currently used mass spectrometry (MS), capillary electrophoresis (CE), and liquid chromatography (LC) methods. In particular, we demonstrated the great potential of fluorescent SWNTs for glycan-lectin interactions sensing. In this case, SWNTs are noncovalently functionalized to introduce a chelated nickel group. This group provides a docking site for the His-tagged lectin and acts as the signal modulator. As the nickel proximity to the SWNT surface changes, the fluorescent signal is increased or attenuated. When a free glycan or glycosylated probe interacts with the lectin, the signal increases and they are able to obtain loading curves similar to surface plasmon resonance measurements. They demonstrate the sensitivity and specificity of this platform with two higher-affined glycan-lectin pairs: fucose (Fuc) to PA-IIL and N-acetylglucosamine (GlcNAc) to GafD.Lastly, we discuss how developments in protein biomarker detection in general are benefiting specifically from label-free molecular recognition. Electrical field effect transistors, chemi-resistive and fluorometric nanosensors based on various nanomaterials have demonstrated substantial progress in recent years in addressing this challenging problem. In this Account, we compare the balance between sensitivity, selectivity, and nonspecific adsorption for various applications. In particular, our group has utilized SWNTs as fluorescence sensors for label-free protein-protein interaction measurements. In this assay, we have encapsulated each nanotube in a biocompatible polymer, chitosan, which has been further modified to conjugate nitrilotriacetic acid (NTA) groups. After Ni2+ chelation, NTA Ni 2+ complexes bind to his-tagged proteins, resulting in a local environment change of the SWNT array, leading to optical fluorescence modulation with detection limit down to 100 nM. We have further engineered the platform to monitor single protein binding events, with an even lower detection limit down to 10 pM.

Original languageEnglish (US)
Pages (from-to)979-988
Number of pages10
JournalAccounts of chemical research
Issue number4
StatePublished - Apr 15 2014
Externally publishedYes

ASJC Scopus subject areas

  • General Chemistry


Dive into the research topics of 'Recent advances in molecular recognition based on nanoengineered platforms'. Together they form a unique fingerprint.

Cite this