Real-time fatigue crack prediction using self-sensing buckypaper and gated recurrent unit

Hyeonho Hwang, Jinwoo Song, Heung Soo Kim, Aditi Chattopadhyay

Research output: Contribution to journalArticlepeer-review

1 Scopus citations


Aircraft is regarded as a collection of modern technologies from throughout all industries. However, it is inevitable to develop defects during its service life. In general, the aircraft has a periodic maintenance period, and is inspected according to a well-established process, for example non-destructive testing. However, the maintenance requires massive time and cost. If an unexpected defect occurs due to external environments before the maintenance cycle returns, it is impossible to prevent subsequent damage. This study proposes a novel real-time fatigue crack prediction method using self-sensing carbon nanotube buckypaper and deep learning algorithm. Carbon nanotube buckypaper was fabricated by the wet method. The physics-informed gated recurrent unit was used to predict real time crack growth. The physics-informed deep learning model accurately predicted the fatigue crack length. The results showed that the proposed method is promising in detecting the real-time fatigue crack growth of aircraft structure.

Original languageEnglish (US)
Pages (from-to)1401-1409
Number of pages9
JournalJournal of Mechanical Science and Technology
Issue number3
StatePublished - Mar 2023


  • Buckypaper
  • Carbon nanotube
  • Fatigue crack
  • Gated recurrent unit
  • Strain sensing
  • Structural health monitoring

ASJC Scopus subject areas

  • Mechanics of Materials
  • Mechanical Engineering


Dive into the research topics of 'Real-time fatigue crack prediction using self-sensing buckypaper and gated recurrent unit'. Together they form a unique fingerprint.

Cite this