Quasi-static and dynamic behavior of additively manufactured metallic lattice cylinders

Hossein Sadeghi, Dhruv Bhate, Joseph Abraham, Joseph Magallanes

Research output: Chapter in Book/Report/Conference proceedingConference contribution

5 Scopus citations

Abstract

In this paper, quasi-static and dynamic behavior of additively manufactured stainless steel lattice cylinders is studied. Cylindrical samples with internal lattice structure are fabricated by a laser powder bed fusion system. Equivalent hollow cylindrical samples with the same length, outer diameter, and mass are also fabricated. Split Hopkinson bar is used to study the behavior of the specimens under high strain rate loading. It is observed that lattice cylinders reduce the transmitted wave amplitude up to about 21% compared to their equivalent hollow cylinders. However, the lower transmitted wave energy in lattice cylinders comes at the expense of a greater reduction in their stiffness, when compared to their equivalent hollow cylinder. In addition, it is observed that increasing the loading rate by five orders of magnitude leads to up to about 36% increase in the peak force that the lattice cylinder can carry, which is attributed to strain rate hardening effect in the bulk stainless steel material. Finite element simulations of the specimens under dynamic loads are performed to study the effect of strain rate hardening, thermal softening, and the failure mode on dynamic behavior of the specimens. Numerical results are compared with experimental data and good qualitative agreement is observed.

Original languageEnglish (US)
Title of host publicationShock Compression of Condensed Matter - 2017
Subtitle of host publicationProceedings of the Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter
EditorsMarcus D. Knudson, Eric N. Brown, Ricky Chau, Timothy C. Germann, J. Matthew D. Lane, Jon H. Eggert
PublisherAmerican Institute of Physics Inc.
ISBN (Electronic)9780735416932
DOIs
StatePublished - Jul 3 2018
Event20th Biennial American Physical Society Conference on Shock Compression of Condensed Matter, SCCM 2017 - St. Louis, United States
Duration: Jul 9 2017Jul 14 2017

Publication series

NameAIP Conference Proceedings
Volume1979
ISSN (Print)0094-243X
ISSN (Electronic)1551-7616

Other

Other20th Biennial American Physical Society Conference on Shock Compression of Condensed Matter, SCCM 2017
Country/TerritoryUnited States
CitySt. Louis
Period7/9/177/14/17

ASJC Scopus subject areas

  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Quasi-static and dynamic behavior of additively manufactured metallic lattice cylinders'. Together they form a unique fingerprint.

Cite this