Prediction of occult invasive disease in ductal carcinoma in situ using computer-extracted mammographic features

Bibo Shi, Lars J. Grimm, Maciej A. Mazurowski, Jeffrey R. Marks, Lorraine M. King, Carlo Maley, E. Shelley Hwang, Joseph Y. Lo

Research output: Chapter in Book/Report/Conference proceedingConference contribution

3 Scopus citations

Abstract

Predicting the risk of occult invasive disease in ductal carcinoma in situ (DCIS) is an important task to help address the overdiagnosis and overtreatment problems associated with breast cancer. In this work, we investigated the feasibility of using computer-extracted mammographic features to predict occult invasive disease in patients with biopsy proven DCIS. We proposed a computer-vision algorithm based approach to extract mammographic features from magnification views of full field digital mammography (FFDM) for patients with DCIS. After an expert breast radiologist provided a region of interest (ROI) mask for the DCIS lesion, the proposed approach is able to segment individual microcalcifications (MCs), detect the boundary of the MC cluster (MCC), and extract 113 mammographic features from MCs and MCC within the ROI. In this study, we extracted mammographic features from 99 patients with DCIS (74 pure DCIS; 25 DCIS plus invasive disease). The predictive power of the mammographic features was demonstrated through binary classifications between pure DCIS and DCIS with invasive disease using linear discriminant analysis (LDA). Before classification, the minimum redundancy Maximum Relevance (mRMR) feature selection method was first applied to choose subsets of useful features. The generalization performance was assessed using Leave-One-Out Cross-Validation and Receiver Operating Characteristic (ROC) curve analysis. Using the computer-extracted mammographic features, the proposed model was able to distinguish DCIS with invasive disease from pure DCIS, with an average classification performance of AUC = 0.61 ± 0.05. Overall, the proposed computer-extracted mammographic features are promising for predicting occult invasive disease in DCIS.

Original languageEnglish (US)
Title of host publicationMedical Imaging 2017
Subtitle of host publicationComputer-Aided Diagnosis
EditorsNicholas A. Petrick, Samuel G. Armato
PublisherSPIE
ISBN (Electronic)9781510607132
DOIs
StatePublished - 2017
EventMedical Imaging 2017: Computer-Aided Diagnosis - Orlando, United States
Duration: Feb 13 2017Feb 16 2017

Publication series

NameProgress in Biomedical Optics and Imaging - Proceedings of SPIE
Volume10134
ISSN (Print)1605-7422

Other

OtherMedical Imaging 2017: Computer-Aided Diagnosis
Country/TerritoryUnited States
CityOrlando
Period2/13/172/16/17

Keywords

  • Breast cancer
  • CAD
  • Digital mammogram
  • Ductal carcinoma in situ
  • Microcalcification

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Atomic and Molecular Physics, and Optics
  • Radiology Nuclear Medicine and imaging
  • Biomaterials

Fingerprint

Dive into the research topics of 'Prediction of occult invasive disease in ductal carcinoma in situ using computer-extracted mammographic features'. Together they form a unique fingerprint.

Cite this