Abstract

An expeditious development of graph learning in recent years has found innumerable applications in several di-versified fields. Of the main associated challenges are the volume and complexity of graph data. The graph learning models suffer from the inability to efficiently learn graph information. In order to indemnify this inefficacy, physics-informed graph learning (PIGL) is emerging. PIGL incorporates physics rules while performing graph learning, which has enormous benefits. This paper presents a systematic review of PIGL methods. We begin with introducing a unified framework of graph learning models followed by examining existing PIGL methods in relation to the unified framework. We also discuss several future challenges for PIGL. This survey paper is expected to stimulate innovative research and development activities pertaining to PIGL.

Original languageEnglish (US)
Title of host publicationProceedings - 22nd IEEE International Conference on Data Mining Workshops, ICDMW 2022
EditorsK. Selcuk Candan, Thang N. Dinh, My T. Thai, Takashi Washio
PublisherIEEE Computer Society
Pages732-739
Number of pages8
ISBN (Electronic)9798350346091
DOIs
StatePublished - 2022
Event22nd IEEE International Conference on Data Mining Workshops, ICDMW 2022 - Orlando, United States
Duration: Nov 28 2022Dec 1 2022

Publication series

NameIEEE International Conference on Data Mining Workshops, ICDMW
Volume2022-November
ISSN (Print)2375-9232
ISSN (Electronic)2375-9259

Conference

Conference22nd IEEE International Conference on Data Mining Workshops, ICDMW 2022
Country/TerritoryUnited States
CityOrlando
Period11/28/2212/1/22

Keywords

  • graph learning
  • graph neural networks
  • network embedding
  • network representation learning
  • physics

ASJC Scopus subject areas

  • Computer Science Applications
  • Software

Fingerprint

Dive into the research topics of 'Physics-Informed Graph Learning'. Together they form a unique fingerprint.

Cite this