Abstract
Collective behaviors exhibited by animal groups, such as fish schools, bird flocks, or insect swarms are fascinating examples of self-organization in biology. Concepts and methods from statistical physics have been used to argue theoretically about the potential consequences of collective effects in such living systems. In particular, it has been proposed that such collective systems should operate close to a phase transition, specifically a (pseudo-)critical point, in order to optimize their capability for collective computation. In this chapter, we will first review relevant phase transitions exhibited by animal collectives, pointing out the difficulties of applying concepts from statistical physics to biological systems. Then we will discuss the current state of research on the “criticality hypothesis”, including methods for how to measure distance from criticality and specific functional consequences for animal groups operating near a phase transition. We will highlight the emerging view that de-emphasizes the optimality of being exactly at a critical point and instead explores the potential benefits of living systems being able to tune to an optimal distance from criticality. We will close by laying out future challenges for studying collective behavior at the interface of physics and biology. Figures References Related Details Order, Disorder and Criticality Metrics Downloaded 2 times 11 citation on Dimensions. History PDF download back World Sientific Logo Collective behaviors exhibited by animal groups, such as fish schools, bird flocks, or insect swarms are fascinating examples of self-organization in biology. Concepts and methods from statistical physics have been used to argue theoretically about the potential consequences of collective effects in such living systems. In particular, it has been proposed that such collective systems should operate close to a phase transition, specifically a (pseudo-)critical point, in order to optimize their capability for collective computation. In this chapter, we will first review relevant phase transitions exhibited by animal collectives, pointing out the difficulties of applying concepts from statistical physics to biological systems. Then we will discuss the current state of research on the “criticality hypothesis”, including methods for how to measure distance from criticality and specific functional consequences for animal groups operating near a phase transition. We will highlight the emerging view that de-emphasizes the optimality of being exactly at a critical point and instead explores the potential benefits of living systems being able to tune to an optimal distance from criticality. We will close by laying out future challenges for studying collective behavior at the interface of physics and biology.
Original language | English (US) |
---|---|
Title of host publication | Order, Disorder and Criticality |
Subtitle of host publication | Advanced Problems of Phase Transition Theory: Volume 7 |
Publisher | World Scientific Publishing Co. |
Pages | 179-208 |
Number of pages | 30 |
ISBN (Electronic) | 9789811260438 |
ISBN (Print) | 9789811260421 |
DOIs | |
State | Published - Jan 1 2022 |
ASJC Scopus subject areas
- General Physics and Astronomy