Performance of chlorophyll prediction indices for Eragrostis tef at Sentinel-2 MSI and Landsat-8 OLI spectral resolutions

K. Colton Flynn, Amy E. Frazier, Sintayehu Admas

Research output: Contribution to journalArticlepeer-review

10 Scopus citations


As remotely sensed data becomes more readily available around the world, satellites such as Landsat-8 and Sentinel-2 have great potential to support precision agriculture. Sensors with high spectral and spatial resolutions are particularly optimal for limited land resource farmers to improve land management. The objective of this short communication is to assess the performance of Sentinel-2 and Landsat-8 multispectral bands for chlorophyll prediction using indices that were originally developed using imaging spectroscopy/hyperspectral data. Remotely sensed chlorophyll content measures are often utilized as a proxy of plant health. Performance of a group of chlorophyll prediction indices is tested for tef (Eragrostis tef), an endemic grass crop native to Ethiopia that forms a major component of Ethiopian diets and is grown by limited land resource farmers. Hyperspectral reflectance data captured in situ at the canopy level were convolved into bands approximating Landsat-8 and Sentinel-2 sensors, and a suite of chlorophyll prediction indices were computed and regressed against chlorophyll content. Results show that simple pigment indices employing wavelengths corresponding to the blue and ultra-blue bands performed best for predicting chlorophyll. The red-edge index computed using the Sentinel-2 bands also performed well. These findings suggest that publicly available, multispectral imagery can potentially substitute for hyperspectral data in chlorophyll prediction indices, thereby improving the accessibility of precision agriculture methods.

Original languageEnglish (US)
Pages (from-to)1057-1071
Number of pages15
JournalPrecision Agriculture
Issue number5
StatePublished - Oct 1 2020


  • Eragrostis tef
  • Ethiopia
  • Hyperspectral
  • Imaging spectroscopy
  • Red-edge
  • Remote sensing

ASJC Scopus subject areas

  • General Agricultural and Biological Sciences


Dive into the research topics of 'Performance of chlorophyll prediction indices for Eragrostis tef at Sentinel-2 MSI and Landsat-8 OLI spectral resolutions'. Together they form a unique fingerprint.

Cite this