Pedigree Data from Six Rhesus Macaque (Macaca mulatta) Matrilines at the California National Primate Research Center Indicate Inbreeding and Loss of Genetic Variation

Robert F. Oldt, Brianne Beisner, Ashley Cameron, Ori Pomerantz, Sree Kanthaswamy

Research output: Contribution to journalArticlepeer-review

Abstract

Relatedness and kinship structure in matrilines are a potential source of social stability. The current study aimed to analyze the extant pedigrees of 6 living matrilines in different field cages to assess rates of cross-generational inbreeding and loss of genetic variation over time. All 6 matrilines showed increasing levels of inbreeding over generation time, although the rates of increase were different. The female-to-male-adult sex ratio was correlated with average matriline inbreeding levels, while the number of adult males was positively correlated with average matriline genetic diversity. Over five times more paternal half-sibs than maternal half-sibs were present because paternity had been restricted to a few males yearly. Therefore, the relatedness through the paternal lines was over five times greater than that of the maternal lines. Overall, each matriline lost low to moderate levels of genetic variation with time. The current rates of gene flow between field cages by cross-fostered infants have not stopped inbreeding within these matrilines or loss of diversity due to genetic drift. This situation probably developed because translocated animals, especially males, may not breed successfully. Only 4 of the 22 translocated individuals, all females, eventually reproduced, resulting in 13 offspring and generating an overall breeding success of 0.59 across all 6 study matrilines. However, even this low rate of reproduction by the translocated animals reduced inbreeding and kinship among matrilines and increased genetic heterogeneity in the matrilines. Based on this study, we propose several colony management strategies, including equalizing adult sex ratios to increase the effective population size in the field cages, increasing the number of cross-fostered infants, and relying more on multigenerational pedigree data to aid the alignment of genetic and behavioral management techniques.

Original languageEnglish (US)
Pages (from-to)502-511
Number of pages10
JournalJournal of the American Association for Laboratory Animal Science
Volume62
Issue number6
DOIs
StatePublished - Nov 2023
Externally publishedYes

ASJC Scopus subject areas

  • Animal Science and Zoology

Fingerprint

Dive into the research topics of 'Pedigree Data from Six Rhesus Macaque (Macaca mulatta) Matrilines at the California National Primate Research Center Indicate Inbreeding and Loss of Genetic Variation'. Together they form a unique fingerprint.

Cite this