Abstract
This work proposes an extension of neural ordinary differential equations (NODEs) by introducing an additional set of ODE input parameters to NODEs. This extension allows NODEs to learn multiple dynamics specified by the input parameter instances. Our extension is inspired by the concept of parameterized ODEs, which are widely investigated in computational science and engineering contexts, where characteristics of the governing equations vary over the input parameters. We apply the proposed parameterized NODEs (PNODEs) for learning latent dynamics of complex dynamical processes that arise in computational physics, which is an essential component for enabling rapid numerical simulations for time-critical physics applications. For this, we propose an encoder-decoder-type framework, which models latent dynamics as PNODEs. We demonstrate the effectiveness of PNODEs on benchmark problems from computational physics.
Original language | English (US) |
---|---|
Article number | 20210162 |
Journal | Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences |
Volume | 477 |
Issue number | 2253 |
DOIs | |
State | Published - 2021 |
Keywords
- autoencoders
- deep learning
- latent-dynamics learning
- model reduction
- neural ordinary differential equations
- nonlinear manifolds
ASJC Scopus subject areas
- Mathematics(all)
- Engineering(all)
- Physics and Astronomy(all)
Fingerprint
Dive into the research topics of 'Parameterized neural ordinary differential equations: Applications to computational physics problems'. Together they form a unique fingerprint.Datasets
-
Figure S1: from Parameterized neural ordinary differential equations: applications to computational physics problems
Lee, K. (Creator) & Parish, E. J. (Creator), The Royal Society, 2021
DOI: 10.6084/m9.figshare.16627269.v2, https://rs.figshare.com/articles/journal_contribution/Figure_S1_from_Parametrized_neural_ordinary_differential_equations_applications_to_computational_physics_problems/16627269/2
Dataset
-
Supplementary material from "Parameterized neural ordinary differential equations: applications to computational physics problems"
Lee, K. (Creator) & Parish, E. J. (Creator), The Royal Society, 2021
DOI: 10.6084/m9.figshare.c.5599853.v3, https://rs.figshare.com/collections/Supplementary_material_from_Parametrized_neural_ordinary_differential_equations_applications_to_computational_physics_problems_/5599853/3
Dataset
-
Figure S3: from Parameterized neural ordinary differential equations: applications to computational physics problems
Lee, K. (Creator) & Parish, E. J. (Creator), The Royal Society, 2021
DOI: 10.6084/m9.figshare.16627266.v2, https://rs.figshare.com/articles/journal_contribution/Figure_S3_from_Parametrized_neural_ordinary_differential_equations_applications_to_computational_physics_problems/16627266/2
Dataset