2 Scopus citations


Bayesian compressive sensing (BCS) helps address ill-posed signal recovery problems using the Bayesian estimation framework. Gibbs sampling is a technique used in Bayesian estimation that iteratively draws samples from conditional posterior distributions. However, Gibbs sampling is inherently sequential and existing parallel implementations focus on reducing the communication between computing units at the cost of increase in recovery error. In this work, we propose a two-stage parallel coefficient update scheme for wavelet-based Bayesian compressive sensing, where the first stage approximates the real distributions of the wavelet coefficients and the second stage computes the final estimate of the coefficients. While in the first stage the parallel computing units share information with each other, in the second stage, the parallel units work independently. We propose a new coefficient update scheme that updates coefficients in both stages based on data generated a few rounds ago. Such a scheme helps in relaxing the timing constraints for communication in the first stage and computations in the second stage. We design the corresponding parallel architecture and synthesize it in 7 nm technology node. We show that in a system with 8 computing units, our method helps reduce the execution time by 17.4× compared to a sequential implementation without any increase in the signal recovery error.

Original languageEnglish (US)
Title of host publicationProceedings of the IEEE Workshop on Signal Processing Systems, SiPS 2018
PublisherInstitute of Electrical and Electronics Engineers Inc.
Number of pages6
ISBN (Electronic)9781538663189
StatePublished - Dec 31 2018
Event2018 IEEE Workshop on Signal Processing Systems, SiPS 2018 - Cape Town, South Africa
Duration: Oct 21 2018Oct 24 2018

Publication series

NameIEEE Workshop on Signal Processing Systems, SiPS: Design and Implementation
ISSN (Print)1520-6130


Conference2018 IEEE Workshop on Signal Processing Systems, SiPS 2018
Country/TerritorySouth Africa
CityCape Town


  • Bayesian compressive sensing
  • Gibbs sampling
  • parallel implementation

ASJC Scopus subject areas

  • Electrical and Electronic Engineering
  • Signal Processing
  • Applied Mathematics
  • Hardware and Architecture


Dive into the research topics of 'Parallel Wavelet-based Bayesian Compressive Sensing based on Gibbs Sampling'. Together they form a unique fingerprint.

Cite this