Optical Response of Hybrid Plasmon-Exciton Nanomaterials in the Presence of Overlapping Resonances

Maxim Sukharev, Paul N. Day, Ruth Pachter

    Research output: Contribution to journalArticlepeer-review

    12 Scopus citations


    We consider a hybrid plasmon-exciton system comprising a resonant molecular subsystem and three Au wires supporting a dipole mode that can be coupled to a dark mode in controllable fashion by variation of a symmetry parameter. The physics of such a system under strong coupling conditions is examined in detail. It is shown that if two wires supporting the dark mode are covered with molecular layers, the system exhibits four resonant modes for a strong coupling regime due to asymmetry and lifted degeneracy of the molecular state in this case, while upon having molecular aggregates covering the top wire with a dipolar mode, three resonant modes appear. Pump-probe simulations are performed to scrutinize the quantum dynamics and find possible ways to control plasmon-exciton materials. It is demonstrated that one can design hybrid nanomaterials with highly pronounced Fano-type resonances when excited by femtosecond lasers.

    Original languageEnglish (US)
    Pages (from-to)935-941
    Number of pages7
    JournalACS Photonics
    Issue number7
    StatePublished - Jul 15 2015


    • exciton-plasmon coupling
    • Fano resonance
    • surface plasmons

    ASJC Scopus subject areas

    • Electronic, Optical and Magnetic Materials
    • Atomic and Molecular Physics, and Optics
    • Biotechnology
    • Electrical and Electronic Engineering


    Dive into the research topics of 'Optical Response of Hybrid Plasmon-Exciton Nanomaterials in the Presence of Overlapping Resonances'. Together they form a unique fingerprint.

    Cite this