Abstract
The general form of a quasilinear nonstationary k-step method for solving of the Cauchy problem for ordinary differential equations is discussed. The convergence theorem is stated under rather weak conditions. It is not assumed that the increment function is Lipschitz-continuous but only that it satisfies the Perron type condition appearing in the uniqueness theory for the Cauchy problem with a nondecreasing comparison function. The result established in the paper is an extension of the theory given by G. Dahlquist and the recent result of K. Taubert.
Original language | English (US) |
---|---|
Pages (from-to) | 351-361 |
Number of pages | 11 |
Journal | Computing |
Volume | 20 |
Issue number | 4 |
DOIs | |
State | Published - Dec 1 1978 |
Externally published | Yes |
ASJC Scopus subject areas
- Software
- Theoretical Computer Science
- Numerical Analysis
- Computer Science Applications
- Computational Theory and Mathematics
- Computational Mathematics