Abstract
A novel host material of "M"-type carbazole/fluorene-based mDCzPF with a high triplet energy by utilizing meta-substituted phenyl groups as linkers was developed. It was demonstrated that the position of the substituents significantly affected the molecular configuration and dipole moment, which played a critical role in the device performances. Red phosphorescent OLED utilizing the "M"-type mDCzPF as the host represented a 10-fold operational lifetime improvement over the OLED using a "V"-type pDCzPF linked by para-substituted phenyl groups as the host because of the good charge transport ability of the mDCzPF. Additionally, the "M"-type mDCzPF host was also compatible with a blue emitting phosphorescent emitter PtNON. The PtNON-doped OLED using mDCzPF as the host exhibited a peak EQE of 18.3% with a small roll off, yet maintained an EQE of 13.3% at a high brightness of 5000 cd/m2. Thus, the novel "M"-type mDCzPF could be employed as stable host material for efficient OLED emitting across the whole visible spectrum. This study should provide a viable method for designing new host materials for the development of stable and efficient phosphorescent OLEDs.
Original language | English (US) |
---|---|
Pages (from-to) | 40320-40331 |
Number of pages | 12 |
Journal | ACS Applied Materials and Interfaces |
Volume | 11 |
Issue number | 43 |
DOIs | |
State | Published - Oct 30 2019 |
Keywords
- OLED
- blue device
- high triplet energy
- host material
- operational lifetime
ASJC Scopus subject areas
- Materials Science(all)