Nanowire transistor arrays for mapping neural circuits in acute brain slices

Quan Qing, Sumon K. Pal, Bozhi Tian, Xiaojie Duan, Brian P. Timko, Tzahi Cohen-Karni, Venkatesh N. Murthy, Charles M. Lieber

Research output: Contribution to journalArticlepeer-review

179 Scopus citations


Revealing the functional connectivity in natural neuronal networks is central to understanding circuits in the brain. Here,we show that silicon nanowire field-effect transistor (Si NWFET) arrays fabricated on transparent substrates can be reliably interfaced to acute brain slices. NWFETarrays were readily designed to record across a wide range of length scales, while the transparent device chips enabled imaging of individual cell bodies and identification of areas of healthy neurons at both upper and lower tissue surfaces. Simultaneous NWFET and patch clamp studies enabled unambiguous identification of action potential signals, with additional features detected at earlier times by the nanodevices. NWFET recording at different positions in the absence and presence of synaptic and ion-channel blockers enabled assignment of these features to presynaptic firing and postsynaptic depolarization from regions either close to somata or abundant in dendritic projections. In all cases, the NWFET signal amplitudes were from 0.3-3 mV. In contrast to conventional multielectrode array measurements, the small active surface of the NWFET devices, ∼0.06 μm2, provides highly localized multiplexed measurements of neuronal activities with demonstrated sub-millisecond temporal resolution and, significantly, better than 30 μm spatial resolution. In addition, multiplexed mapping with 2D NWFETarrays revealed spatially heterogeneous functional connectivity in the olfactory cortex with a resolution surpassing substantially previous electrical recording techniques. Our demonstration of simultaneous high temporal and spatial resolution recording, as well as mapping of functional connectivity, suggest that NWFETs can become a powerful platform for studying neural circuits in the brain.

Original languageEnglish (US)
Pages (from-to)1882-1887
Number of pages6
JournalProceedings of the National Academy of Sciences of the United States of America
Issue number5
StatePublished - Feb 2 2010
Externally publishedYes


  • Multiplexed recording
  • Nanodevice
  • Neuron
  • Patch clamp
  • Silicon

ASJC Scopus subject areas

  • General


Dive into the research topics of 'Nanowire transistor arrays for mapping neural circuits in acute brain slices'. Together they form a unique fingerprint.

Cite this