Nanostructured Layered Cathode for Rechargeable Mg-Ion Batteries

Sanja Tepavcevic, Yuzi Liu, Dehua Zhou, Barry Lai, Jorg Maser, Xiaobing Zuo, Henry Chan, Petr Král, Christopher S. Johnson, Vojislav Stamenkovic, Nenad M. Markovic, Tijana Rajh

Research output: Contribution to journalArticlepeer-review

164 Scopus citations


Nanostructured bilayered V2O5 was electrochemically deposited within a carbon nanofoam conductive support. As-prepared electrochemically synthesized bilayered V2O5 incorporates structural water and hydroxyl groups, which effectively stabilizes the interlayers and provides coordinative preference to the Mg2+ cation in reversible cycling. This open-framework electrode shows reversible intercalation/deintercalation of Mg2+ ions in common electrolytes such as acetonitrile. Using a scanning transmission electron microscope we demonstrate that Mg2+ ions can be effectively intercalated into the interlayer spacing of nanostructured V2O5, enabling electrochemical magnesiation against a Mg anode with a specific capacity of 240 mAh/g. We employ HRTEM and X-ray fluorescence (XRF) imaging to understand the role of environment in the intercalation processes. A rebuilt full cell was tested by employing a high-energy ball-milled Sn alloy anode in acetonitrile with Mg(ClO4)2 salt. XRF microscopy reveals effective insertion of Mg ions throughout the V2O5 structure during discharge and removal of Mg ions during electrode charging, in agreement with the electrode capacity. We show using XANES and XRF microscopy that reversible Mg intercalation is limited by the anode capacity. (Figure Presented).

Original languageEnglish (US)
Pages (from-to)8194-8205
Number of pages12
JournalACS nano
Issue number8
StatePublished - Aug 25 2015
Externally publishedYes


  • XRF mapping of transporting ions
  • bilayered VO
  • electrochemical synthesis
  • hydrated oxide
  • magnesium ion battery
  • nanostructured electrodes

ASJC Scopus subject areas

  • Materials Science(all)
  • Engineering(all)
  • Physics and Astronomy(all)


Dive into the research topics of 'Nanostructured Layered Cathode for Rechargeable Mg-Ion Batteries'. Together they form a unique fingerprint.

Cite this