Abstract
Cyanovirin-N (CV-N) is a cyanobacterial lectin that binds to specific oligomannoses on the surface of gp120, resulting in nanomolar antiviral activity against HIV. In its monomeric form, CV-N contains two functional carbohydrate-binding domains, A and B. When refolded at high concentration, the protein can form a domain-swapped dimer. To clarify the role of multiple-binding sites in CV-N, we previously designed a monomeric mutant, P51G-m4-CVN, in which the binding site on domain A was rendered ineffective by four mutations (m4); in addition, a hinge region mutation (P51G) hinders the formation of a domain swapped dimer. The protein bound gp120 with diminished affinity and was completely inactive against HIV. Here, we present two mutants, ΔQ50-m4-CVN and S52P-m4-CVN, which fold exclusively as domain-swapped dimers while containing the four mutations that abolish domain A. The dimers contain two intact B domains, thus restoring multivalency. ΔQ50-m4-CVN and S52P-m4-CVN bind gp120 at low-nanomolar concentrations and recover in part the antiviral activity of wt CV-N. These results indicate that the number of carbohydrate binding domains, rather than their identity, is crucial to CV-N functionality.
Original language | English (US) |
---|---|
Pages (from-to) | 194-200 |
Number of pages | 7 |
Journal | Biopolymers |
Volume | 92 |
Issue number | 3 |
DOIs | |
State | Published - 2009 |
Keywords
- Antiviral protein
- Cyanovirin
- HIV
- Lectin
- Multivalency
ASJC Scopus subject areas
- Biophysics
- Biochemistry
- Biomaterials
- Organic Chemistry