Molecular phylogeny of Spirotrichonymphea (Parabasalia) with emphasis on Spironympha, Spirotrichonympha, and three new genera Pseudospironympha, Nanospironympha, and Brugerollina

Satoko Noda, Osamu Kitade, Daniel E. Jasso-Selles, Stephen J. Taerum, Miki Takayanagi, Renate Radek, Nathan Lo, Moriya Ohkuma, Gillian H. Gile

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

Spirotrichonymphea, one of the six classes of phylum Parabasalia, are characterized by bearing many flagella in spiral rows, and they occur exclusively in the guts of termites. Phylogenetic relationships among the 13 described genera are not well understood due to complex morphological evolution and a paucity of molecular data. One such understudied genus is Spironympha. It has been variously considered a valid genus, a subgenus of Spirotrichonympha, or an “immature” life cycle stage of Spirotrichonympha. To clarify this, we sequenced the small subunit rRNA gene sequences of Spironympha and Spirotrichonympha cells isolated from the hindguts of Reticulitermes species and Hodotermopsis sjostedti and confirmed the molecular identity of H. sjostedti symbionts using fluorescence in situ hybridization. Spironympha as currently circumscribed is polyphyletic, with both H. sjostedti symbiont species branching separately from the “true” Spironympha from Reticulitermes. Similarly, the Spirotrichonympha symbiont of H. sjostedti branches separately from the “true” Spirotrichonympha found in Reticulitermes. Our data support Spironympha from Reticulitermes as a valid genus most closely related to Spirotrichonympha, though its monophyly and interspecific relationships are not resolved in our molecular phylogenetic analysis. We propose three new genera to accommodate the H. sjostedti symbionts and two new species of Spirotrichonympha from Reticulitermes.

Original languageEnglish (US)
Article numbere12967
JournalJournal of Eukaryotic Microbiology
Volume70
Issue number3
DOIs
StatePublished - May 1 2023

Keywords

  • Metamonada
  • SSU rRNA
  • coevolution
  • symbiosis
  • termite

ASJC Scopus subject areas

  • Microbiology

Fingerprint

Dive into the research topics of 'Molecular phylogeny of Spirotrichonymphea (Parabasalia) with emphasis on Spironympha, Spirotrichonympha, and three new genera Pseudospironympha, Nanospironympha, and Brugerollina'. Together they form a unique fingerprint.

Cite this