TY - JOUR
T1 - Molecular origins of selectivity in the reduction of NO x by NH 3
AU - Sun, Donghai
AU - Schneider, William F.
AU - Adams, James
AU - Sengupta, Debasis
PY - 2004/10/28
Y1 - 2004/10/28
N2 - The fundamental principle underlying the selective catalytic reduction (SCR) of NO x to N 2 is the promotion of reactions of reductant with NO x over competing, and thermodynamically preferred, reactions with a large excess of O 2. A similar competition between NO x and O 2 exists in the noncatalytic, thermal reduction of NO x with NH 3. In this work, density functional theory calculations are used to elucidate the origins of the remarkable selectivity in thermal deNO x. Thermal deNO x is initiated by the conversion of NH 3 into the active reductant, NH 2 radical. NH 2 radical reacts with NO at rates typical of gas-phase radical reactions to produce a relatively strongly bound H 2NNO adduct that readily rearranges and decomposes to N 2 and H 2O. In contrast, NH 2 radical reacts exceedingly slowly with O 2: the H 2N-OO adduct is weakly bound and more readily falls apart than reacts to products. The pronounced discrimination of NH 2 against reaction with O 2 is unusual behavior for a radical but can be understood through comparison of the electronic structures of the H 2NNO and H 2NOO radical adducts. These two key elements of thermal deNO x-reductant activation and kinetic inhibition of reactions with O 2-are similarly essential to successful catalytic lean NO x reduction, and are important to consider in evaluating and modeling NO x SCR.
AB - The fundamental principle underlying the selective catalytic reduction (SCR) of NO x to N 2 is the promotion of reactions of reductant with NO x over competing, and thermodynamically preferred, reactions with a large excess of O 2. A similar competition between NO x and O 2 exists in the noncatalytic, thermal reduction of NO x with NH 3. In this work, density functional theory calculations are used to elucidate the origins of the remarkable selectivity in thermal deNO x. Thermal deNO x is initiated by the conversion of NH 3 into the active reductant, NH 2 radical. NH 2 radical reacts with NO at rates typical of gas-phase radical reactions to produce a relatively strongly bound H 2NNO adduct that readily rearranges and decomposes to N 2 and H 2O. In contrast, NH 2 radical reacts exceedingly slowly with O 2: the H 2N-OO adduct is weakly bound and more readily falls apart than reacts to products. The pronounced discrimination of NH 2 against reaction with O 2 is unusual behavior for a radical but can be understood through comparison of the electronic structures of the H 2NNO and H 2NOO radical adducts. These two key elements of thermal deNO x-reductant activation and kinetic inhibition of reactions with O 2-are similarly essential to successful catalytic lean NO x reduction, and are important to consider in evaluating and modeling NO x SCR.
UR - http://www.scopus.com/inward/record.url?scp=8344262235&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=8344262235&partnerID=8YFLogxK
U2 - 10.1021/jp049079a
DO - 10.1021/jp049079a
M3 - Article
AN - SCOPUS:8344262235
SN - 1089-5639
VL - 108
SP - 9365
EP - 9374
JO - Journal of Physical Chemistry A
JF - Journal of Physical Chemistry A
IS - 43
ER -