Modeling magneto-optical trapping of CaF molecules

M. R. Tarbutt, Timothy Steimle

Research output: Contribution to journalArticlepeer-review

45 Scopus citations


Magneto-optical trapping forces for molecules are far weaker than for alkali-metal atoms because the photon scattering rate is reduced when there are multiple ground states, and because of optical pumping into dark states. The force is further reduced when the upper state has a much smaller Zeeman splitting than the lower state. We use a rate model to estimate the strength of the trapping and damping forces in a magneto-optical trap (MOT) of CaF molecules, using either the A2Π1/2-X2Σ+ transition or the B2Σ+-X2Σ+ transition. We identify a mechanism of magneto-optical trapping that arises when, in each beam of the MOT, two laser components with opposite polarizations and different detunings address the same transition. This mechanism produces a strong trapping force even when the upper state has little or no Zeeman splitting. It is the main mechanism responsible for the trapping force when the A2Π1/2-X2Σ+ transition is used.

Original languageEnglish (US)
Article number053401
JournalPhysical Review A - Atomic, Molecular, and Optical Physics
Issue number5
StatePublished - Nov 2 2015

ASJC Scopus subject areas

  • Atomic and Molecular Physics, and Optics


Dive into the research topics of 'Modeling magneto-optical trapping of CaF molecules'. Together they form a unique fingerprint.

Cite this