Mixed-conducting ceramic-carbonate dual-phase membranes: Gas permeation and counter-permeation

Han Chun Wu, Gabriel Nile, Jerry Y.S. Lin

Research output: Contribution to journalArticlepeer-review

14 Scopus citations


CO2 and O2 permeable ceramic-carbonate dual-phase membranes can be used in membrane reactors for applications such as selective oxidation of hydrocarbons. Two ceramic-carbonate dual-phase membranes consisting of mixed electronic-ionic conducting perovskite-type ceramics of Pr0.6Sr0.4Co0.2Fe0.8 and SrFe0.9Ta0.1O3-δ are studied for CO2 and O2 permeation and counter-permeation. The geometric factors for the carbonate phase and ceramic phase, obtained from the data of helium permeation and electrical conductivity, are used to calculate the effective carbonate and oxygen ionic conductivity in the carbonate and ceramic phase. Without counter-permeation, O2 permeation through the dual-phase membrane is controlled by oxygen ionic conduction in the ceramic phase and CO2 permeation is determined by the total conductance including effective carbonate and oxygen ionic conductivities in both phases. When the dual-phase membrane is exposed to CO2 on one side and O2 on the other side, counter-permeation of CO2 and O2 occurs in the opposite directions across the membrane. With CO2 counter-permeation, the oxygen ionic flux is higher than that without counter-permeation due to an increase in the driving force for oxygen transport. CO2 permeation consumes oxygen ions transporting through the membrane, resulting in a lower O2 permeation flux compared with the O2-only permeation case. However, O2 counter-permeation has negligible effect on CO2 permeation flux for the dual-phase membranes.

Original languageEnglish (US)
Article number118093
JournalJournal of Membrane Science
StatePublished - Jun 15 2020


  • CO separation
  • Dual-phase membrane
  • Ionic conduction
  • Permeation

ASJC Scopus subject areas

  • Biochemistry
  • General Materials Science
  • Physical and Theoretical Chemistry
  • Filtration and Separation


Dive into the research topics of 'Mixed-conducting ceramic-carbonate dual-phase membranes: Gas permeation and counter-permeation'. Together they form a unique fingerprint.

Cite this