TY - JOUR
T1 - Mitigation of Edge and Surface States Effects in Two-Dimensional WS2 for Photocatalytic H2 Generation
AU - Franklin, Giovanna Formiga
AU - Balocchi, Andrea
AU - Taberna, Pierre Louis
AU - Barnabe, Antoine
AU - Barbosa, Juliana Barros
AU - Blei, Mark
AU - Tongay, Sefaattin
AU - Marie, Xavier
AU - Urita, Koki
AU - Chane-Ching, Jean Yves
N1 - Funding Information:
This research was supported by the CNRS, France. We thank J. Esvan for XPS measurements.
Publisher Copyright:
© 2022 Wiley-VCH GmbH.
PY - 2022/4/22
Y1 - 2022/4/22
N2 - Large scale development of the 2D transition metal di-chalcogenides (TMDC) relies on landmark improvement in performance, which could emerge from nanostructuration. Using p-WS2 nanoflakes with different degrees of exfoliation and fracturing, perspectives were provided to develop high-surface-area 2D p-WS2 films for the photocatalytic hydrogen generation. The critical role of inter-nanoflakes contacts within high-surface-area 2D films was demonstrated, highlighting the benefit of plane/plane versus edge/plane contacts. Evidence of the high density of surface states displayed by these 2D films was provided through electrochemical measurements. In addition to operating as recombination centers, the surface states were shown to give rise to deleterious Fermi-level pinning (FLP), which dramatically decreased the efficiency of charge carrier separation. Lastly, promising strategies yielding FLP suppression via surface states modification were proposed. In particular, use of a multifunctional ultrathin film displaying healing, catalytic, and n-type semiconduction properties was shown to greatly enhance charge carrier separation and transport to the photo-electrode/electrolyte interface. When the 2D photoelectrodes were fabricated with the above prerequisites (i. e., a high proportion of plane/plane contacts and a successful surface states chemical modification), a photocurrent up to 4.5 mA cm−2 was achieved for the first time on 2D p-WS2 photocathodes for hydrogen generation.
AB - Large scale development of the 2D transition metal di-chalcogenides (TMDC) relies on landmark improvement in performance, which could emerge from nanostructuration. Using p-WS2 nanoflakes with different degrees of exfoliation and fracturing, perspectives were provided to develop high-surface-area 2D p-WS2 films for the photocatalytic hydrogen generation. The critical role of inter-nanoflakes contacts within high-surface-area 2D films was demonstrated, highlighting the benefit of plane/plane versus edge/plane contacts. Evidence of the high density of surface states displayed by these 2D films was provided through electrochemical measurements. In addition to operating as recombination centers, the surface states were shown to give rise to deleterious Fermi-level pinning (FLP), which dramatically decreased the efficiency of charge carrier separation. Lastly, promising strategies yielding FLP suppression via surface states modification were proposed. In particular, use of a multifunctional ultrathin film displaying healing, catalytic, and n-type semiconduction properties was shown to greatly enhance charge carrier separation and transport to the photo-electrode/electrolyte interface. When the 2D photoelectrodes were fabricated with the above prerequisites (i. e., a high proportion of plane/plane contacts and a successful surface states chemical modification), a photocurrent up to 4.5 mA cm−2 was achieved for the first time on 2D p-WS2 photocathodes for hydrogen generation.
KW - 2D materials
KW - Fermi-level pinning
KW - hydrogen
KW - photocatalysis
KW - surface states
UR - http://www.scopus.com/inward/record.url?scp=85126298331&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85126298331&partnerID=8YFLogxK
U2 - 10.1002/cssc.202200169
DO - 10.1002/cssc.202200169
M3 - Article
C2 - 35230739
AN - SCOPUS:85126298331
SN - 1864-5631
VL - 15
JO - ChemSusChem
JF - ChemSusChem
IS - 8
M1 - e202200169
ER -