Local Indicators of Spatial Association—LISA

Luc Anselin

Research output: Contribution to journalArticlepeer-review

8339 Scopus citations


The capabilities for visualization, rapid data retrieval, and manipulation in geographic information systems (GIS) have created the need for new techniques of exploratory data analysis that focus on the “spatial” aspects of the data. The identification of local patterns of spatial association is an important concern in this respect. In this paper, I outline a new general class of local indicators of spatial association (LISA) and show how they allow for the decomposition of global indicators, such as Moran's I, into the contribution of each observation. The LISA statistics serve two purposes. On one hand, they may be interpreted as indicators of local pockets of nonstationarity, or hot spots, similar to the Gi and G*i statistics of Getis and Ord (1992). On the other hand, they may be used to assess the influence of individual locations on the magnitude of the global statistic and to identify “outliers,” as in Anselin's Moran scatterplot (1993a). An initial evaluation of the properties of a LISA statistic is carried out for the local Moran, which is applied in a study of the spatial pattern of conflict for African countries and in a number of Monte Carlo simulations. 1995 The Ohio State University

Original languageEnglish (US)
Pages (from-to)93-115
Number of pages23
JournalGeographical Analysis
Issue number2
StatePublished - Apr 1995
Externally publishedYes

ASJC Scopus subject areas

  • Geography, Planning and Development
  • Earth-Surface Processes


Dive into the research topics of 'Local Indicators of Spatial Association—LISA'. Together they form a unique fingerprint.

Cite this